
Package: mrds (via r-universe)
September 10, 2024

Maintainer Laura Marshall <lhm@st-andrews.ac.uk>

License GPL (>=2)

Title Mark-Recapture Distance Sampling

LazyLoad yes

Author Jeff Laake <jeff.laake@noaa.gov>, David Borchers

<dlb@st-and.ac.uk>, Len Thomas <len.thomas@st-and.ac.uk>, David
Miller <dave@ninepointeightone.net>, Jon Bishop and Jonah
McArthur

Description Animal abundance estimation via conventional, multiple
covariate and mark-recapture distance sampling (CDS/MCDS/MRDS).
Detection function fitting is performed via maximum likelihood.
Also included are diagnostics and plotting for fitted detection
functions. Abundance estimation is via a Horvitz-Thompson-like
estimator.

Version 2.3.0

URL https://github.com/DistanceDevelopment/mrds/

BugReports https://github.com/DistanceDevelopment/mrds/issues

Depends R (>= 3.0)

Imports optimx (>= 2013.8.6), mgcv, methods, numDeriv, Rsolnp

Suggests testthat, covr, knitr, rmarkdown, bookdown

RoxygenNote 7.2.3

Encoding UTF-8

Repository https://distancedevelopment.r-universe.dev

RemoteUrl https://github.com/distanceDevelopment/mrds

RemoteRef HEAD

RemoteSha 689a9e95316c37ef9712f4c2f6d4100ca2bc861b

1

https://github.com/DistanceDevelopment/mrds/
https://github.com/DistanceDevelopment/mrds/issues

2 Contents

Contents
mrds-package . 4
add.df.covar.line . 5
adj.check.order . 6
AIC.ddf . 7
apex.gamma . 8
assign.default.values . 8
average.line . 9
average.line.cond . 10
book.tee.data . 11
calc.se.Np . 12
cdf.ds . 12
cds . 13
check.bounds . 14
check.mono . 15
coef.ds . 16
compute.Nht . 17
covered.region.dht . 18
create.bins . 18
create.command.file . 19
create.model.frame . 19
create.varstructure . 20
ddf . 21
ddf.ds . 27
ddf.gof . 29
ddf.io . 30
ddf.io.fi . 32
ddf.rem . 33
ddf.rem.fi . 35
ddf.trial . 36
ddf.trial.fi . 38
DeltaMethod . 39
det.tables . 40
detfct.fit . 41
detfct.fit.opt . 42
dht . 44
dht.deriv . 48
dht.se . 49
ds.function . 51
flnl . 52
flt.var . 53
g0 . 54
getpar . 54
gof.ds . 55
gstdint . 56
histline . 57
integratedetfct.logistic . 58

Contents 3

integratelogistic.analytic . 59
integratepdf . 59
io.glm . 60
is.linear.logistic . 61
is.logistic.constant . 62
keyfct.th1 . 63
keyfct.th2 . 63
keyfct.tpn . 64
lfbcvi . 65
lfgcwa . 71
logisticbyx . 78
logisticbyz . 79
logisticdetfct . 79
logisticdupbyx . 80
logisticdupbyx_fast . 80
logit . 81
logLik.ddf . 82
mcds . 82
MCDS.exe . 83
mrds_opt . 84
NCovered . 86
nlminb_wrapper . 86
p.det . 87
p.dist.table . 88
parse.optimx . 89
pdot.dsr.integrate.logistic . 90
plot.det.tables . 91
plot.ds . 92
plot.io . 95
plot.io.fi . 97
plot.rem . 99
plot.rem.fi . 101
plot.trial . 103
plot.trial.fi . 104
plot_cond . 106
plot_layout . 108
plot_uncond . 108
predict.ds . 110
print.ddf . 112
print.ddf.gof . 112
print.det.tables . 113
print.dht . 114
print.p_dist_table . 114
print.summary.ds . 115
print.summary.io . 116
print.summary.io.fi . 116
print.summary.rem . 117
print.summary.rem.fi . 118

4 mrds-package

print.summary.trial . 118
print.summary.trial.fi . 119
prob.deriv . 120
prob.se . 121
process.data . 122
pronghorn . 123
ptdata.distance . 124
ptdata.dual . 124
ptdata.removal . 125
ptdata.single . 125
qqplot.ddf . 126
rem.glm . 127
rescale_pars . 129
sample_ddf . 130
setbounds . 130
setcov . 131
setinitial.ds . 132
sim.mix . 132
solvecov . 133
stake77 . 134
stake78 . 136
summary.ds . 138
summary.io . 139
summary.io.fi . 140
summary.rem . 141
summary.rem.fi . 142
summary.trial . 143
summary.trial.fi . 144
survey.region.dht . 145
test.breaks . 145
varn . 146

Index 148

mrds-package Mark-Recapture Distance Sampling (mrds)

Description

This package implements mark-recapture distance sampling methods as described in D.L. Borchers,
W. Zucchini and Fewster, R.M. (1988), "Mark-recapture models for line transect surveys", Biomet-
rics 54: 1207-1220. and Laake, J.L. (1999) "Distance sampling with independent observers: Re-
ducing bias from heterogeneity by weakening the conditional independence assumption." in Am-
strup, G.W., Garner, S.C., Laake, J.L., Manly, B.F.J., McDonald, L.L. and Robertson, D.G. (eds)
"Marine mammal survey and assessment methods", Balkema, Rotterdam: 137-148 and Borchers,
D.L., Laake, J.L., Southwell, C. and Paxton, C.L.G. "Accommodating unmodelled heterogeneity in
double-observer distance sampling surveys". 2006. Biometrics 62:372-378.)

add.df.covar.line 5

Details

Examples of distance sampling analyses are available at http://examples.distancesampling.
org/.

For help with distance sampling and this package, there is a Google Group https://groups.
google.com/forum/#!forum/distance-sampling.

Author(s)

Jeff Laake <jeff.laake@noaa.gov>, David Borchers <dlb@mcs.st-and.ac.uk>, Len Thomas <len@mcs.st-
and.ac.uk>, David L. Miller <dave@ninepointeightone.net>, Jon Bishop <jonb@mcs.st-and.ac.uk>

add.df.covar.line Add covariate levels detection function plots

Description

Add a line or lines to a plot of the detection function which correspond to a a given covariate
combination. These can be particularly useful when there is a small number of factor levels or if
quantiles of a continuous covariate are specified.

Usage

add.df.covar.line(ddf, data, ndist = 250, pdf = FALSE, breaks = "Sturges", ...)

add_df_covar_line(ddf, data, ndist = 250, pdf = FALSE, breaks = "Sturges", ...)

Arguments

ddf a fitted detection function object.
data a data.frame with the covariate combination you want to plot.
ndist number of distances at which to evaluate the detection function.
pdf should the line be drawn on the probability density scale; ignored for line tran-

sects.
breaks required to ensure that PDF lines are the right size, should match what is sup-

plied to original plot command. Defaults to "Sturges" breaks, as in hist. Only
used if pdf=TRUE.

... extra arguments to give to line (lty, lwd, col).

Details

All covariates must be specified in data. Plots can become quite busy when this approach is used.
It may be useful to fix some covariates at their median level and plot set values of a covariate of
interest. For example setting weather (e.g., Beaufort) to its median and plotting levels of observer,
then creating a second plot for a fixed observer with levels of weather.

Arguments to lines are supplied in . . . and aesthetics like line type (lty), line width (lwd) and
colour (col) are recycled. By default lty is used to distinguish between the lines. It may be useful
to add a legend to the plot (lines are plotted in the order of data).

http://examples.distancesampling.org/
http://examples.distancesampling.org/
https://groups.google.com/forum/#!forum/distance-sampling
https://groups.google.com/forum/#!forum/distance-sampling

6 adj.check.order

Value

invisibly, the values of detectability over the truncation range.

Author(s)

David L Miller

Examples

Not run:
fit an example model
data(book.tee.data)
egdata <- book.tee.data$book.tee.dataframe
result <- ddf(dsmodel = ~mcds(key = "hn", formula = ~sex),

data = egdata[egdata$observer==1,], method = "ds",
meta.data = list(width = 4))

make a base plot, showpoints=FALSE makes the plot less busy
plot(result, showpoints=FALSE)

add lines for sex one at a time
add.df.covar.line(result, data.frame(sex=0), lty=2)
add.df.covar.line(result, data.frame(sex=1), lty=3)

add a legend
legend(3, 1, c("Average", "sex==0", "sex==1"), lty=1:3)

alternatively we can add both at once
fixing line type and varying colour
plot(result, showpoints=FALSE)
add.df.covar.line(result, data.frame(sex=c(0,1)), lty=1,

col=c("red", "green"))
add a legend
legend(3, 1, c("Average", "sex==0", "sex==1"), lty=1,

col=c("black", "red", "green"))

End(Not run)

adj.check.order Check order of adjustment terms

Description

’adj.check.order’ checks that the Cosine, Hermite or simple polynomials are of the correct order.

Usage

adj.check.order(adj.series, adj.order, key)

AIC.ddf 7

Arguments

adj.series Adjustment series used (’cos’,’herm’,’poly’)
adj.order Integer to check
key key function to be used with this adjustment series

Details

Only even functions are allowed as adjustment terms, per p.47 of Buckland et al (2001). If incorrect
terms are supplied then an error is throw via stop.

Value

Nothing! Just calls stop if something goes wrong.

Author(s)

David Miller

References

S.T.Buckland, D.R.Anderson, K.P. Burnham, J.L. Laake. 1993. Robust Models. In: Distance
Sampling, eds. S.T.Buckland, D.R.Anderson, K.P. Burnham, J.L. Laake. Chapman & Hall.

See Also

adjfct.cos, adjfct.poly, adjfct.herm, detfct, mcds, cds

AIC.ddf Akaike’s An Information Criterion for detection functions

Description

Extract the AIC from a fitted detection function.

Usage

S3 method for class 'ddf'
AIC(object, ..., k = 2)

Arguments

object a fitted detection function object
... optionally more fitted model objects.
k penalty per parameter to be used; the default k = 2 is the "classical" AIC

Author(s)

David L Miller

8 assign.default.values

apex.gamma Get the apex for a gamma detection function

Description

Get the apex for a gamma detection function

Usage

apex.gamma(ddfobj)

Arguments

ddfobj ddf object

Value

the distance at which the gamma peaks

Author(s)

Jeff Laake

assign.default.values Assign default values to list elements that have not been already as-
signed

Description

Assigns default values for argument in list x from argument=value pairs in . . . if x$argument
doesn’t already exist

Usage

assign.default.values(x, ...)

Arguments

x generic list
... unspecified list of argument=value pairs that are used to assign values

Value

x - list with filled values

Author(s)

Jeff Laake

average.line 9

average.line Average detection function line for plotting

Description

For models with covariates the detection probability for each observation can vary. This function
computes an average value for a set of distances to plot an average line to graphically represent
the fitted model in plots that compare histograms and the scatter of individual estimated detection
probabilities. Averages are calculated over the observed covariate combinations.

Usage

average.line(finebr, obs, model)

Arguments

finebr set of fine breaks in distance over which detection function values are averaged
and plotted

obs value of observer for averaging (1-2 individual observers; 3 duplicates; 4 pooled
observation team)

model ddf model object

Value

list with 2 elements

xgrid vector of gridded distance values
values vector of average detection function values at the xgrid values

Note

Internal function called from plot functions for ddf objects

Author(s)

Jeff Laake

10 average.line.cond

average.line.cond Average conditional detection function line for plotting

Description

For models with covariates the detection probability for each observation can vary. This function
computes an average value for a set of distances to plot an average line to graphically represent
the fitted model in plots that compare histograms and the scatter of individual estimated detection
probabilities.

Usage

average.line.cond(finebr, obs, model)

Arguments

finebr set of fine breaks in distance over which detection function values are averaged
and plotted

obs value of observer for averaging (1-2 individual observers)

model ddf model object

Value

list with 2 elements:

xgrid vector of gridded distance values
values vector of average detection function values at the xgrid values

Note

Internal function called from plot functions for ddf objects

Author(s)

Jeff Laake

book.tee.data 11

book.tee.data Golf tee data used in chapter 6 of Advanced Distance Sampling exam-
ples

Description

Double platform data collected in a line transect survey of golf tees by 2 observers at St. Andrews.
Field sex was actually colour of the golf tee: 0 - green; 1 - yellow. Exposure was either low (0) or
high(1) depending on height of tee above the ground. size was the number of tees in an observed
cluster.

Format

A list of 4 dataframes, with the list elements named: book.tee.dataframe, book.tee.region, book.tee.samples
and book.tee.obs.

book.tee.dataframe is the distance sampling data dataframe. Used in the call to fit the detection
function in ddf. Contains the following columns:

object numeric object id

observer factor representing observer 1 or 2

detected numeric 1 if the animal was detected 0 otherwise

distance numeric value for the distance the animal was detected

size numeric value for the group size

sex numeric value for sex of animal

exposure numeric value for exposure level 0 or 1

book.tee.region: is the region table dataframe. Used to supply the strata areas to the dht function.
Contains the following columns:

Region.Label factor giving the strata labels

Area numeric value giving the strata areas

book.tee.samples is the samples table dataframe to match the transect ids to the region ids and
supply the effort. Used in the dht function. Contains the following columns:

Sample.Label numeric giving the sample / transect labels

Region.Label factor giving the strata labels

Effort numeric value giving the sample / transect lengths

book.tee.obs is the observations table dataframe to match the object ids in the distance data to the
transect labels. Used in the dht function. Contains the following columns:

object numeric value object id

Region.Label factor giving the strata labels

Sample.Label numeric giving the sample / transect labels

12 cdf.ds

calc.se.Np Find se of average p and N

Description

Find se of average p and N

Usage

calc.se.Np(model, avgp, n, average.p)

Arguments

model a ddf model object

avgp average p function

n sample size

average.p the average probability of detection for the model

Author(s)

David L. Miller

cdf.ds Cumulative distribution function (cdf) for fitted distance sampling de-
tection function

Description

Computes cdf values of observed distances from fitted distribution. For a set of observed x it
returns the integral of f(x) for the range= (inner, x), where inner is the innermost distance which is
observable (either 0 or left if left truncated). In terms of g(x) this is the integral of g(x) over range
divided by the integral of g(x) over the entire range of the data (inner, W).

Usage

cdf.ds(model, newdata = NULL)

Arguments

model fitted distance sampling model

newdata new data values if computed for values other than the original observations

Value

vector of cdf values for each observation

cds 13

Note

This is an internal function that is not intended to be invoked directly. It is called by qqplot.ddf to
compute values for Kolmogorov-Smirnov and Cramer-von Mises tests and the Q-Q plot.

Author(s)

Jeff Laake

See Also

qqplot.ddf

cds CDS function definition

Description

Creates model formula list for conventional distance sampling using values supplied in call to ddf

Usage

cds(
key = NULL,
adj.series = NULL,
adj.order = NULL,
adj.scale = "width",
adj.exp = FALSE,
formula = ~1,
shape.formula = ~1

)

Arguments

key string identifying key function (currently either "hn" (half-normal),"hr" (hazard-
rate), "unif" (uniform) or "gamma" (gamma distribution)

adj.series string identifying adjustment functions cos (Cosine), herm (Hermite polynomi-
als), poly (simple polynomials) or NULL

adj.order vector of order of adjustment terms to include

adj.scale whether to scale the adjustment terms by "width" or "scale"

adj.exp if TRUE uses exp(adj) for adjustment to keep f(x)>0

formula formula for scale function (included for completeness only only formula=~1 for
cds)

shape.formula formula for shape function

14 check.bounds

Value

A formula list used to define the detection function model

fct string "cds"

key key function string

adj.series adjustment function string

adj.order adjustment function orders

adj.scale adjustment function scale type

formula formula for scale function

shape.formula formula for shape function

Author(s)

Jeff Laake; Dave Miller

check.bounds Check parameters bounds during optimisations

Description

Simple internal function to check that the optimisation didn’t hit bounds. Based on code that used
to live in detfct.fit.opt.

Usage

check.bounds(lt, lowerbounds, upperbounds, ddfobj, showit, setlower, setupper)

Arguments

lt optimisation object

lowerbounds current lower bounds

upperbounds current upper bounds

ddfobj ddf object

showit debug level

setlower were lower bounds set by the user

setupper were upper bounds set by the user

Value

TRUE if parameters are close to the bound, else FALSE

Author(s)

Dave Miller; Jeff Laake

check.mono 15

check.mono Check that a detection function is monotone

Description

Check that a fitted detection function is monotone non-increasing.

Usage

check.mono(
df,
strict = TRUE,
n.pts = 100,
tolerance = 1e-06,
plot = FALSE,
max.plots = 6

)

Arguments

df a fitted detection function object

strict if TRUE (default) the detection function must be "strictly" monotone, that is that
(g(x[i])<=g(x[i-1])) over the whole range (left to right truncation points).

n.pts number of equally-spaced points between left and right truncation at which to
evaluate the detection function (default 100)

tolerance numerical tolerance for monotonicity checks (default 1e-6)

plot plot a diagnostic highlighting the non-monotonic areas (default FALSE)

max.plots when plot=TRUE, what is the maximum number of plots of non-monotone co-
variate combinations that should be plotted? Plotted combinations are a random
sample of the non-monotonic subset of evaluations. No effect for non-covariate
models.

Details

Evaluates a series of points over the range of the detection function (left to right truncation) then
determines:

1. If the detection function is always less than or equal to its value at the left truncation (g(x)<=g(left),
or usually g(x)<=g(0)). 2. (Optionally) The detection function is always monotone decreasing
(g(x[i])<=g(x[i-1])). This check is only performed when strict=TRUE (the default). 3. The
detection function is never less than 0 (g(x)>=0). 4. The detection function is never greater than 1
(g(x)<=1).

For models with covariates in the scale parameter of the detection function is evaluated at all ob-
served covariate combinations.

Currently covariates in the shape parameter are not supported.

16 coef.ds

Value

TRUE if the detection function is monotone, FALSE if it’s not. warnings are issued to warn the user
that the function is non-monotonic.

Author(s)

David L. Miller

coef.ds Extract coefficients

Description

Extract coefficients and provide a summary of parameters and estimates from the output of ddf
model objects.

Usage

S3 method for class 'ds'
coef(object,...)

S3 method for class 'io'
coef(object,...)

S3 method for class 'io.fi'
coef(object,...)

S3 method for class 'trial'
coef(object,...)

S3 method for class 'trial.fi'
coef(object,...)

S3 method for class 'rem'
coef(object,...)

S3 method for class 'rem.fi'
coef(object,...)

Arguments

object ddf model object of class ds, io, io.fi, trial, trial.fi, rem, or rem.fi.

... unspecified arguments that are unused at present

Value

For coef.ds List of data frames for coefficients (scale and exponent (if hazard))

scale dataframe of scale coefficient estimates and standard errors

exponent dataframe with exponent estimate and standard error if hazard detection function

For all others Data frame containing each coefficient and standard error

compute.Nht 17

Note

These functions are called by the generic function coef for any ddf model object. It can be called
directly by the user, but it is typically safest to use coef which calls the appropriate function based
on the type of model.

Author(s)

Jeff Laake

compute.Nht Horvitz-Thompson estimates 1/p_i or s_i/p_i

Description

Compute individual components of Horvitz-Thompson abundance estimate in covered region for a
particular subset of the data depending on value of group = TRUE (do group abundance); FALSE(do
individual abundance)

Usage

compute.Nht(pdot, group = TRUE, size = NULL)

Arguments

pdot vector of estimated detection probabilities

group if TRUE (do group abundance); FALSE(do individual abundance)

size vector of group size values for clustered populations

Value

vector of H-T components for abundance estimate

Note

Internal function called by covered.region.dht

Author(s)

Jeff Laake

18 create.bins

covered.region.dht Covered region estimate of abundance from Horvitz-Thompson-like
estimator

Description

Computes H-T abundance within covered region by sample.

Usage

covered.region.dht(obs, samples, group)

Arguments

obs observations table

samples samples table

group if TRUE compute abundance of group otherwise abundance of individuals

Value

Nhat.by.sample - dataframe of abundance by sample

Note

Internal function called by dht and related functions

Author(s)

Jeff Laake

create.bins Create bins from a set of binned distances and a set of cutpoints.

Description

This is an internal routine and shouldn’t be necessary in normal analyses.

Usage

create.bins(data, cutpoints)

Arguments

data ‘data.frame‘ with at least the column ‘distance‘.

cutpoints vector of cutpoints for the bins

create.command.file 19

Value

argument ‘data‘ with two extra columns ‘distbegin‘ and ‘distend‘.

Author(s)

David L. Miller

create.command.file create.command.file

Description

create.command.file

Usage

create.command.file(dsmodel = call(), data, method, meta.data, control)

Arguments

dsmodel distance sampling model specification

data dataframe containing data to be analyzed

method analysis method

meta.data list containing settings controlling data structure

control list containing settings controlling model fitting

Author(s)

Jonah McArthur

create.model.frame Create a model frame for ddf fitting

Description

Creates a model.frame for distance detection function fitting. It includes some pre-specified and
computed variables with those included in the model specified by user (formula)

Usage

create.model.frame(xmat, scale.formula, meta.data, shape.formula = NULL)

20 create.varstructure

Arguments

xmat dataframe for ddf

scale.formula user specified formula for scale of distance detection function

meta.data user-specified meta.data (see ddf

shape.formula user specified formula for shape parameter of distance detection function

Details

The following fields are always included: detected, observer, binned, and optionally distance (unless
null), timesdetected (if present in data). If the distance data were binned, include distbegin and
distend point fields. If the integration width varies also include int.begin and int.end and include an
offset field for an iterative glm, if used. Beyond these fields only fields used in the model formula
are included.

Value

model frame for analysis

Note

Internal function and not called by user

Author(s)

Jeff Laake

create.varstructure Creates structures needed to compute abundance and variance

Description

Creates samples and obs dataframes used to compute abundance and its variance based on a struc-
ture of geographic regions and samples within each region. The intent is to generalize this routine
to work with other sampling structures.

Usage

create.varstructure(model, region, sample, obs, dht.se)

Arguments

model fitted ddf object

region region table

sample sample table

obs table of object #’s and links to sample and region table

dht.se is uncertainty going to be calculated later?

ddf 21

Details

The function performs the following tasks: 1)tests to make sure that region labels are unique, 2)
merges sample and region tables into a samples table and issue a warning if not all samples were
used, 3) if some regions have no samples or if some values of Area were not valid areas given then
issue error and stop, then an error is given and the code stops, 4) creates a unique region/sample
label in samples and in obs, 5) merges observations with sample and issues a warning if not all
observations were used, 6) sorts regions by its label and merges the values with the predictions
from the fitted model based on the object number and limits it to the data that is appropriate for the
fitted detection function.

Value

List with 2 elements:

samples merged dataframe containing region and sample info - one record per sample

obs merged observation data and links to region and samples

Note

Internal function called by dht

Author(s)

Jeff Laake

ddf Distance Detection Function Fitting

Description

Generic function for fitting detection functions for distance sampling with single and double ob-
server configurations. Independent observer, trial and dependent observer (removal) configurations
are included. This is a generic function which does little other than to validate the calling arguments
and methods and then calls the appropriate method specific function to do the analysis.

Usage

ddf(
dsmodel = call(),
mrmodel = call(),
data,
method = "ds",
meta.data = list(),
control = list(),
call = NULL

)

22 ddf

Arguments

dsmodel distance sampling model specification

mrmodel mark-recapture model specification

data dataframe containing data to be analyzed

method analysis method

meta.data list containing settings controlling data structure

control list containing settings controlling model fitting

call not implemented for top level ddf function, this is set by ddf as it is passed to
the other ddf generics.

Details

The fitting code has certain expectations about data. It should be a dataframe with at least the
following fields named and defined as follows:

object object number
observer observer number (1 or 2) for double observer; only 1 if single observer
detected 1 if detected by the observer and 0 if missed; always 1 for single observer
distance perpendicular distance

If the data are for clustered objects, the dataframe should also contain a field named size that gives
the observed number in the cluster. If the data are for a double observer survey, then there are two
records for each observation and each should have the same object number. The code assumes the
observations are listed in the same order for each observer such that if the data are subsetted by
observer there will be the same number of records in each and each subset will be in the same
object order. In addition to these predefined and pre-named fields, the dataframe can have any
number and type of fields that are used as covariates in the dsmodel and mrmodel. At present,
discrepancies between observations in distance, size and any user-specified covariates cannot be
assimilated into the uncertainty of the estimate. The code presumes the values for those fields are
the same for both records (observer=1 and observer=2) and it uses the value from observer 1. Thus
it makes sense to make the values the same for both records in each pair even when both detect the
object or when observer 1 doesn’t detect the object the data would have to be taken from observer
2 and would not be consistent.

Five different fitting methods are currently available and these in turn define whether dsmodel and
mrmodel need to be defined.

Method Single/Double dsmodel mrmodel
ds Single yes no
io Double yes yes
io.fi Double no yes
trial Double yes yes
trial.fi Double no yes
rem Double yes yes
rem.fi Double no yes

ddf 23

Methods with the suffix ".fi" use the assumption of full independence and do not use the distance
sampling portion of the likelihood which is why a dsmodel is not needed. An mrmodel is only
needed for double observer surveys and thus is not needed for method ds.

The dsmodel specifies the detection function g(y) for the distance sampling data and the models
restrict g(0)=1. For single observer data g(y) is the detection function for the single observer and if
it is a double observer survey it is the relative detection function (assuming g(0)=1) of both observers
as a team (the unique observations from both observers). In double observer surveys, the detection
function is p(y)=p(0)g(y) such that p(0)<1. The detection function g(y) is specified by dsmodel
and p(0) estimated from the conditional detection functions (see mrmodel below). The value of
dsmodel is specified using a hybrid formula/function notation. The model definition is prefixed with
a ~ and the remainder is a function definition with specified arguments. At present there are two
different functions, cds and mcds, for conventional distance sampling and multi-covariate distance
sampling. Both functions have the same required arguments (key,formula). The first specifies
the key function this can be half-normal ("hn"), hazard-rate ("hr"), gamma ("gamma") or uniform
("unif"). The argument formula specifies the formula for the log of the scale parameter of the key
function (e.g., the equivalent of the standard deviation in the half-normal). The variable distance
should not be included in the formula because the scale is for distance. See Marques, F.F.C. and
S.T. Buckland (2004) for more details on the representation of the scale formula. For the hazard
rate and gamma functions, an additional shape.formula can be specified for the model of the
shape parameter. The default will be ~1. Adjustment terms can be specified by setting adj.series
which can have the values: "none", "cos" (cosine), "poly" (polynomials), and "herm" (Hermite
polynomials). One must also specify a vector of orders for the adjustment terms (adj.order) and a
scaling (adj.scale) which may be "width" or "scale" (for scaling by the scale parameter). Note that
the uniform key can only be used with adjustments (usually cosine adjustments for a Fourier-type
analysis).

The mrmodel specifies the form of the conditional detection functions (i.e.,probability it is seen by
observer j given it was seen by observer 3-j) for each observer (j=1,2) in a double observer survey.
The value is specified using the same mix of formula/function notation but in this case the functions
are glm and gam. The arguments for the functions are formula and link. At present, only glm
is allowed and it is restricted to link=logit. Thus, currently the only form for the conditional
detection functions is logistic as expressed in eq 6.32 of Laake and Borchers (2004). In contrast to
dsmodel, the argument formula will typically include distance and all other covariates that affect
detection probability. For example, mrmodel=~glm(formula=~distance+size+sex) constructs a
conditional detection function based on the logistic form with additive factors, distance, size, and
sex. As another example, mrmodel=~glm(formula=~distance*size+sex) constructs the same
model with an added interaction between distance and size.

The argument meta.data is a list that enables various options about the data to be set. These options
include:

point if TRUE the data are from point counts and FALSE (default) implies line transect data
width distance specifying half-width of the transect
left distance specifying inner truncation value
binned TRUE or FALSE to specify whether distances should be binned for analysis
breaks if binned=TRUE, this is a required sequence of break points that are used for plotting/gof.

They should match distbegin, distend values if bins are fixed
int.range an integration range for detection probability; either a vector of 2 or matrix with 2

columns

24 ddf

mono constrain the detection function to be weakly monotonically decreasing (only applicable
when there are no covariates in the detection function)

mono.strict when TRUE constrain the detection function to be strictly monotonically decreasing
(again, only applicable when there are no covariates in the detection function)

Using meta.data=list(int.range=c(1,10)) is the same as meta.data=list(left=1,width=10).
If meta.data=list(binned=TRUE) is used, the dataframe needs to contain the fields distbegin and
distend for each observation which specify the left and right hand end points of the distance interval
containing the observation. This is a general data structure that allows the intervals to change rather
than being fixed as in the standard distance analysis tools. Typically, if the intervals are changing so
is the integration range. For example, assume that distance bins are generated using fixed angular
measurements from an aircraft in which the altitude is varying. Because all analyses are truncated
(i.e., the last interval does not go to infinity), the transect width (and the left truncation point if
there is a blindspot below the aircraft) can potentially change for each observation. The argument
int.range can also be entered as a matrix with 2 columns (left and width) and a row for each
observation.

The argument control is a list that enables various analysis options to be set. It is not necessary to
set any of these for most analyses. They were provided so the user can optionally see intermediate
fitting output and to control fitting if the algorithm doesn’t converge which happens infrequently.
The list values include:

showit Integer (0-3, default 0) controls the (increasing)amount of information printed during fit-
ting. 0 - none, >=1 - information about refitting and bound changes is printed, >=2 - infor-
mation about adjustment term fitting is printed, ==3 -per-iteration parameter estimates and
log-likelihood printed.

estimate if FALSE fits model but doesn’t estimate predicted probabilities
refit if TRUE the algorithm will attempt multiple optimizations at different starting values if it

doesn’t converge
nrefits number of refitting attempts
initial a named list of starting values for the dsmodel parameters (e.g. $scale, $shape, $adjustment)
lowerbounds a vector of lowerbounds for the dsmodel parameters in the order the ds parameters

will appear in the par element of the ddf object, i.e. fit.ddf$par where fit.ddf is a fitted
ddf model.

upperbounds a vector of upperbounds for the dsmodel parameters in the order the ds parameters
will appear in the par element of the ddf object, i.e. fit.ddf$par where fit.ddf is a fitted
ddf model.

limit if TRUE restrict analysis to observations with detected=1
debug if TRUE, if fitting fails, return an object with fitting information
nofit if TRUE don’t fit a model, but use the starting values and generate an object based on those

values
optimx.method one (or a vector of) string(s) giving the optimisation method to use. If more than

one is supplied, the results from one are used as the starting values for the next. See optimx

optimx.maxit maximum number of iterations to use in the optimisation.
mono.random.start By default when monotonicity constraints are enforced, a grid of starting

values are tested. Instead random starting values can be used (uniformly distributed between
the upper and lower bounds). Set TRUE for random start, FALSE (default) uses the grid method

ddf 25

mono.outer.iter Number of outer iterations to be used by solnp when fitting a monotonic model.
Default 200.

silent silences warnings within ds fitting method (helpful for running many times without gener-
ating many warning/error messages).

optimizer By default this is set to ’both’ for single observer analyses and ’R’ for double observer
analyses. For single observer analyses where optimizer = ’both’, the R optimizer will be used
and if present the MCDS optimizer will also be used. The result with the best likelihood value
will be selected. To run only a specified optimizer set this value to either ’R’ or ’MCDS’. The
MCDS optimizer cannot currently be used for detection function fitting with double observer
analyses. See mcds_dot_exe for more information.

winebin Location of the wine binary used to run MCDS.exe. See mcds_dot_exe for more informa-
tion.

Examples of distance sampling analyses are available at http://examples.distancesampling.
org/.

Hints and tips on fitting (particularly optimisation issues) are on the mrds_opt manual page.

Value

model object of class=(method, "ddf")

Author(s)

Jeff Laake

References

Laake, J.L. and D.L. Borchers. 2004. Methods for incomplete detection at distance zero. In:
Advanced Distance Sampling, eds. S.T. Buckland, D.R.Anderson, K.P. Burnham, J.L. Laake, D.L.
Borchers, and L. Thomas. Oxford University Press.

Marques, F.F.C. and S.T. Buckland. 2004. Covariate models for the detection function. In: Ad-
vanced Distance Sampling, eds. S.T. Buckland, D.R.Anderson, K.P. Burnham, J.L. Laake, D.L.
Borchers, and L. Thomas. Oxford University Press.

See Also

ddf.ds, ddf.io, ddf.io.fi, ddf.trial, ddf.trial.fi, ddf.rem, ddf.rem.fi, mrds_opt

Examples

load data
data(book.tee.data)
region <- book.tee.data$book.tee.region
egdata <- book.tee.data$book.tee.dataframe
samples <- book.tee.data$book.tee.samples
obs <- book.tee.data$book.tee.obs

fit a half-normal detection function
result <- ddf(dsmodel=~mcds(key="hn", formula=~1), data=egdata, method="ds",

http://examples.distancesampling.org/
http://examples.distancesampling.org/

26 ddf

meta.data=list(width=4))

fit an independent observer model with full independence
result.io.fi <- ddf(mrmodel=~glm(~distance), data=egdata, method="io.fi",

meta.data=list(width = 4))

fit an independent observer model with point independence
result.io <- ddf(dsmodel=~cds(key = "hn"), mrmodel=~glm(~distance),

data=egdata, method="io", meta.data=list(width=4))
Not run:

simulated single observer point count data (see ?ptdata.single)
data(ptdata.single)
ptdata.single$distbegin <- (as.numeric(cut(ptdata.single$distance,

10*(0:10)))-1)*10
ptdata.single$distend <- (as.numeric(cut(ptdata.single$distance,

10*(0:10))))*10
model <- ddf(data=ptdata.single, dsmodel=~cds(key="hn"),

meta.data=list(point=TRUE,binned=TRUE,breaks=10*(0:10)))

summary(model)

plot(model,main="Single observer binned point data - half normal")

model <- ddf(data=ptdata.single, dsmodel=~cds(key="hr"),
meta.data=list(point=TRUE, binned=TRUE, breaks=10*(0:10)))

summary(model)

plot(model, main="Single observer binned point data - hazard rate")

dev.new()

simulated double observer point count data (see ?ptdata.dual)
setup data
data(ptdata.dual)
ptdata.dual$distbegin <- (as.numeric(cut(ptdata.dual$distance,

10*(0:10)))-1)*10
ptdata.dual$distend <- (as.numeric(cut(ptdata.dual$distance,

10*(0:10))))*10

model <- ddf(method="io", data=ptdata.dual, dsmodel=~cds(key="hn"),
mrmodel=~glm(formula=~distance*observer),
meta.data=list(point=TRUE, binned=TRUE, breaks=10*(0:10)))

summary(model)

plot(model, main="Dual observer binned point data", new=FALSE, pages=1)

model <- ddf(method="io", data=ptdata.dual,
dsmodel=~cds(key="unif", adj.series="cos", adj.order=1),
mrmodel=~glm(formula=~distance*observer),
meta.data=list(point=TRUE, binned=TRUE, breaks=10*(0:10)))

ddf.ds 27

summary(model)

par(mfrow=c(2,3))
plot(model,main="Dual observer binned point data",new=FALSE)

End(Not run)

ddf.ds CDS/MCDS Distance Detection Function Fitting

Description

Fits a conventional distance sampling (CDS) (likelihood eq 6.6 in Laake and Borchers 2004) or
multi-covariate distance sampling (MCDS)(likelihood eq 6.14 in Laake and Borchers 2004) model
for the detection function of observed distance data. It only uses key functions and does not in-
corporate adjustment functions as in CDS/MCDS analysis engines in DISTANCE (Marques and
Buckland 2004). Distance can be grouped (binned), ungrouped (unbinned) or mixture of the two.
This function is not called directly by the user and is called from ddf,ddf.io, or ddf.trial.

Usage

S3 method for class 'ds'
ddf(
dsmodel,
mrmodel = NULL,
data,
method = "ds",
meta.data = list(),
control = list(),
call

)

Arguments

dsmodel model list with key function and scale formula if any

mrmodel not used

data data.frame; see ddf for details

method analysis method; only needed if this function called from ddf.io or ddf.trial

meta.data list containing settings controlling data structure

control list containing settings controlling model fitting

call original function call if this function not called directly from ddf (e.g., called
via ddf.io)

28 ddf.ds

Details

For a complete description of each of the calling arguments, see ddf. The argument model in
this function is the same as dsmodel in ddf. The argument dataname is the name of the dataframe
specified by the argument data in ddf. The arguments control,meta.data,and method are defined
the same as in ddf.

Value

result: a ds model object

Note

If mixture of binned and unbinned distance, width must be set to be >= largest interval endpoint;
this could be changed with a more complicated analysis; likewise, if all binned and bins overlap,
the above must also hold; if bins don’t overlap, width must be one of the interval endpoints; same
holds for left truncation Although the mixture analysis works in principle it has not been tested via
simulation.

Author(s)

Jeff Laake

References

Laake, J.L. and D.L. Borchers. 2004. Methods for incomplete detection at distance zero. In:
Advanced Distance Sampling, eds. S.T. Buckland, D.R. Anderson, K.P. Burnham, J.L. Laake, D.L.
Borchers, and L. Thomas. Oxford University Press.

Marques, F.F.C. and S.T. Buckland. 2004. Covariate models for the detection function. In: Ad-
vanced Distance Sampling, eds. S.T. Buckland, D.R. Anderson, K.P. Burnham, J.L. Laake, D.L.
Borchers, and L. Thomas. Oxford University Press.

See Also

flnl, summary.ds, coef.ds, plot.ds,gof.ds

Examples

ddf.ds is called when ddf is called with method="ds"

data(book.tee.data)
region <- book.tee.data$book.tee.region
egdata <- book.tee.data$book.tee.dataframe
samples <- book.tee.data$book.tee.samples
obs <- book.tee.data$book.tee.obs
result <- ddf(dsmodel = ~mcds(key = "hn", formula = ~1),

data = egdata[egdata$observer==1,], method = "ds",
meta.data = list(width = 4))

summary(result,se=TRUE)
plot(result,main="cds - observer 1")
print(dht(result,region,samples,obs,options=list(varflag=0,group=TRUE),

ddf.gof 29

se=TRUE))
print(ddf.gof(result))

ddf.gof Goodness of fit tests for distance sampling models

Description

Generic function that computes chi-square goodness of fit test for detection function models with
binned data and Cramer-von Mises and Kolmogorov-Smirnov (if ks=TRUE)tests for exact distance
data. By default a Q-Q plot is generated for exact data (and can be suppressed using the qq=FALSE
argument).

Usage

ddf.gof(
model,
breaks = NULL,
nc = NULL,
qq = TRUE,
nboot = 100,
ks = FALSE,
...

)

Arguments

model model object

breaks Cutpoints to use for binning data

nc Number of distance classes

qq Flag to indicate whether quantile-quantile plot is desired

nboot number of replicates to use to calculate p-values for the Kolmogorov-Smirnov
goodness of fit test statistics

ks perform the Kolmogorov-Smirnov test (this involves many bootstraps so can
take a while)

... Graphics parameters to pass into qqplot function

Details

Formal goodness of fit testing for detection function models using Kolmogorov-Smirnov and Cramer-
von Mises tests. Both tests are based on looking at the quantile-quantile plot produced by qqplot.ddf
and deviations from the line x=y.

The Kolmogorov-Smirnov test asks the question "what’s the largest vertical distance between a
point and the y=x line?" It uses this distance as a statistic to test the null hypothesis that the samples

30 ddf.io

(EDF and CDF in our case) are from the same distribution (and hence our model fits well). If the
deviation between the y=x line and the points is too large we reject the null hypothesis and say the
model doesn’t have a good fit.

Rather than looking at the single biggest difference between the y=x line and the points in the Q-Q
plot, we might prefer to think about all the differences between line and points, since there may
be many smaller differences that we want to take into account rather than looking for one large
deviation. Its null hypothesis is the same, but the statistic it uses is the sum of the deviations from
each of the point to the line. Note that a bootstrap procedure is required for the Kolmogorov-
Smirnov test to ensure that the p-values from the procedure are correct as the we are comparing
the cumulative distribution function (CDF) and empirical distribution function (EDF) and we have
estimated the parameters of the detection function. The nboot parameter controls the number of
bootstraps to use. Set to 0 to avoid computing bootstraps (much faster but with no Kolmogorov-
Smirnov results, of course).

One can change the precision of printed values by using the print.ddf.gof method’s digits
argument.

Value

List of class ddf.gof containing

chi-square Goodness of fit test statistic

df Degrees of freedom associated with test statistic

p-value Significance level of test statistic

Author(s)

Jeff Laake

See Also

qqplot.ddf

ddf.io Mark-Recapture Distance Sampling (MRDS) IO - PI

Description

Mark-Recapture Distance Sampling (MRDS) Analysis of Independent Observer Configuration and
Point Independence

Usage

S3 method for class 'io'
ddf(
dsmodel,
mrmodel,
data,

ddf.io 31

method = NULL,
meta.data = list(),
control = list(),
call = ""

)

Arguments

dsmodel distance sampling model specification; model list with key function and scale
formula if any

mrmodel mark-recapture model specification; model list with formula and link

data analysis dataframe

method not used

meta.data list containing settings controlling data structure

control list containing settings controlling model fitting

call original function call used to call ddf

Details

MRDS analysis based on point independence involves two separate and independent analyses of the
mark-recapture data and the distance sampling data. For the independent observer configuration,
the mark-recapture data are analysed with a call to ddf.io.fi (see likelihood eq 6.8 and 6.16 in
Laake and Borchers 2004) to fit conditional distance sampling detection functions to estimate p(0),
detection probability at distance zero for the independent observer team based on independence
at zero (eq 6.22 in Laake and Borchers 2004). Independently, the distance data, the union of the
observations from the independent observers, are used to fit a conventional distance sampling (CDS)
(likelihood eq 6.6) or multi-covariate distance sampling (MCDS) (likelihood eq 6.14) model for the
detection function, g(y), such that g(0)=1. The detection function for the observer team is then
created as p(y)=p(0)*g(y) (eq 6.28 of Laake and Borchers 2004) from which predictions are made.
ddf.io is not called directly by the user and is called from ddf with method="io".

For a complete description of each of the calling arguments, see ddf. The argument dataname is the
name of the dataframe specified by the argument data in ddf. The arguments dsmodel, mrmodel,
control and meta.data are defined the same as in ddf.

Value

result: an io model object which is composed of io.fi and ds model objects

Author(s)

Jeff Laake

References

Laake, J.L. and D.L. Borchers. 2004. Methods for incomplete detection at distance zero. In:
Advanced Distance Sampling, eds. S.T. Buckland, D.R.Anderson, K.P. Burnham, J.L. Laake, D.L.
Borchers, and L. Thomas. Oxford University Press.

32 ddf.io.fi

See Also

ddf.io.fi, ddf.ds,summary.io,coef.io,plot.io, gof.io

ddf.io.fi Mark-Recapture Distance Sampling (MRDS) IO - FI

Description

Mark-Recapture Analysis of Independent Observer Configuration with Full Independence

Usage

S3 method for class 'io.fi'
ddf(
dsmodel = NULL,
mrmodel,
data,
method,
meta.data = list(),
control = list(),
call = ""

)

Arguments

dsmodel not used

mrmodel mark-recapture model specification

data analysis dataframe

method analysis method; only needed if this function called from ddf.io

meta.data list containing settings controlling data structure

control list containing settings controlling model fitting

call original function call used to call ddf

Details

The mark-recapture data derived from an independent observer distance sampling survey can be
used to derive conditional detection functions (p_j(y)) for both observers (j=1,2). They are con-
ditional detection functions because detection probability for observer j is based on seeing or not
seeing observations made by observer 3-j. Thus, p_1(y) is estimated by p_1|2(y).

If detections by the observers are independent (full independence) then p_1(y)=p_1|2(y),p_2(y)=p_2|1(y)
and for the union, full independence means that p(y)=p_1(y) + p_2(y) - p_1(y)*p_2(y) for each dis-
tance y. In fitting the detection functions the likelihood given by eq 6.8 and 6.16 in Laake and
Borchers (2004) is used. That analysis does not require the usual distance sampling assumption that
perpendicular distances are uniformly distributed based on line placement that is random relative to

ddf.rem 33

animal distribution. However, that assumption is used in computing predicted detection probability
which is averaged based on a uniform distribution (see eq 6.11 of Laake and Borchers 2004).

For a complete description of each of the calling arguments, see ddf. The argument model in
this function is the same as mrmodel in ddf. The argument dataname is the name of the dataframe
specified by the argument data in ddf. The arguments control,meta.data,and method are defined
the same as in ddf.

Value

result: an io.fi model object

Author(s)

Jeff Laake

References

Laake, J.L. and D.L. Borchers. 2004. Methods for incomplete detection at distance zero. In:
Advanced Distance Sampling, eds. S.T. Buckland, D.R.Anderson, K.P. Burnham, J.L. Laake, D.L.
Borchers, and L. Thomas. Oxford University Press.

See Also

ddf.io,summary.io.fi,coef.io.fi, plot.io.fi,gof.io.fi,io.glm

ddf.rem Mark-Recapture Distance Sampling (MRDS) Removal - PI

Description

Mark-Recapture Distance Sampling (MRDS) Analysis of Removal Observer Configuration and
Point Independence

Usage

S3 method for class 'rem'
ddf(
dsmodel,
mrmodel,
data,
method = NULL,
meta.data = list(),
control = list(),
call = ""

)

34 ddf.rem

Arguments

dsmodel distance sampling model specification; model list with key function and scale
formula if any

mrmodel mark-recapture model specification; model list with formula and link

data analysis dataframe

method not used

meta.data list containing settings controlling data structure

control list containing settings controlling model fitting

call original function call used to call ddf

Details

MRDS analysis based on point independence involves two separate and independent analyses of
the mark-recapture data and the distance sampling data. For the removal observer configuration,
the mark-recapture data are analysed with a call to ddf.rem.fi (see Laake and Borchers 2004) to
fit conditional distance sampling detection functions to estimate p(0), detection probability at dis-
tance zero for the primary observer based on independence at zero (eq 6.22 in Laake and Borchers
2004). Independently, the distance data, the observations from the primary observer, are used to
fit a conventional distance sampling (CDS) (likelihood eq 6.6) or multi-covariate distance sampling
(MCDS) (likelihood eq 6.14) model for the detection function, g(y), such that g(0)=1. The detection
function for the primary observer is then created as p(y)=p(0)*g(y) (eq 6.28 of Laake and Borchers
2004) from which predictions are made. ddf.rem is not called directly by the user and is called
from ddf with method="rem".

For a complete description of each of the calling arguments, see ddf. The argument data is the
dataframe specified by the argument data in ddf. The arguments dsmodel, mrmodel, control and
meta.data are defined the same as in ddf.

Value

result: an rem model object which is composed of rem.fi and ds model objects

Author(s)

Jeff Laake

References

Laake, J.L. and D.L. Borchers. 2004. Methods for incomplete detection at distance zero. In:
Advanced Distance Sampling, eds. S.T. Buckland, D.R.Anderson, K.P. Burnham, J.L. Laake, D.L.
Borchers, and L. Thomas. Oxford University Press.

See Also

ddf.rem.fi, ddf.ds

ddf.rem.fi 35

ddf.rem.fi Mark-Recapture Distance Sampling (MRDS) Removal - FI

Description

Mark-Recapture Distance Sampling (MRDS) Analysis of Removal Observer Configuration with
Full Independence

Usage

S3 method for class 'rem.fi'
ddf(
dsmodel = NULL,
mrmodel,
data,
method,
meta.data = list(),
control = list(),
call = ""

)

Arguments

dsmodel not used

mrmodel mark-recapture model specification

data analysis dataframe

method analysis method; only needed if this function called from ddf.io

meta.data list containing settings controlling data structure

control list containing settings controlling model fitting

call original function call used to call ddf

Details

The mark-recapture data derived from an removal observer distance sampling survey can only derive
conditional detection functions (p_j(y)) for both observers (j=1) because technically it assumes that
detection probability does not vary by occasion (observer in this case). It is a conditional detection
function because detection probability for observer 1 is conditional on the observations seen by
either of the observers. Thus, p_1(y) is estimated by p_1|2(y).

If detections by the observers are independent (full independence) then p_1(y)=p_1|2(y) and for
the union, full independence means that p(y)=p_1(y) + p_2(y) - p_1(y)*p_2(y) for each distance
y. In fitting the detection functions the likelihood from Laake and Borchers (2004) are used. That
analysis does not require the usual distance sampling assumption that perpendicular distances are
uniformly distributed based on line placement that is random relative to animal distribution. How-
ever, that assumption is used in computing predicted detection probability which is averaged based
on a uniform distribution (see eq 6.11 of Laake and Borchers 2004).

36 ddf.trial

For a complete description of each of the calling arguments, see ddf. The argument model in
this function is the same as mrmodel in ddf. The argument dataname is the name of the dataframe
specified by the argument data in ddf. The arguments control,meta.data,and method are defined
the same as in ddf.

Value

result: an rem.fi model object

Author(s)

Jeff Laake

References

Laake, J.L. and D.L. Borchers. 2004. Methods for incomplete detection at distance zero. In:
Advanced Distance Sampling, eds. S.T. Buckland, D.R.Anderson, K.P. Burnham, J.L. Laake, D.L.
Borchers, and L. Thomas. Oxford University Press.

See Also

ddf.io,rem.glm

ddf.trial Mark-Recapture Distance Sampling (MRDS) Trial Configuration - PI

Description

Mark-Recapture Distance Sampling (MRDS) Analysis of Trial Observer Configuration and Point
Independence

Usage

S3 method for class 'trial'
ddf(
dsmodel,
mrmodel,
data,
method = NULL,
meta.data = list(),
control = list(),
call = ""

)

ddf.trial 37

Arguments

dsmodel distance sampling model specification; model list with key function and scale
formula if any

mrmodel mark-recapture model specification; model list with formula and link

data analysis data.frame

method not used

meta.data list containing settings controlling data structure

control list containing settings controlling model fitting

call original function call used to call ddf

Details

MRDS analysis based on point independence involves two separate and independent analyses of
the mark-recapture data and the distance sampling data. For the trial configuration, the mark-
recapture data are analysed with a call to ddf.trial.fi (see likelihood eq 6.12 and 6.17 in Laake
and Borchers 2004) to fit a conditional distance sampling detection function for observer 1 based
on trials (observations) from observer 2 to estimate p_1(0), detection probability at distance zero
for observer 1. Independently, the distance data from observer 1 are used to fit a conventional dis-
tance sampling (CDS) (likelihood eq 6.6) or multi-covariate distance sampling (MCDS) (likelihood
eq 6.14) model for the detection function, g(y), such that g(0)=1. The detection function for ob-
server 1 is then created as p_1(y)=p_1(0)*g(y) (eq 6.28 of Laake and Borchers 2004) from which
predictions are made. ddf.trial is not called directly by the user and is called from ddf with
method="trial".

For a complete description of each of the calling arguments, see ddf. The argument dataname is the
name of the dataframe specified by the argument data in ddf. The arguments dsmodel, mrmodel,
control and meta.data are defined the same as in ddf.

Value

result: a trial model object which is composed of trial.fi and ds model objects

Author(s)

Jeff Laake

References

Laake, J.L. and D.L. Borchers. 2004. Methods for incomplete detection at distance zero. In:
Advanced Distance Sampling, eds. S.T. Buckland, D.R.Anderson, K.P. Burnham, J.L. Laake, D.L.
Borchers, and L. Thomas. Oxford University Press.

See Also

ddf.trial.fi, ddf.ds, summary.trial, coef.trial, plot.trial, gof.trial

38 ddf.trial.fi

ddf.trial.fi Mark-Recapture Analysis of Trial Configuration - FI

Description

Mark-Recapture Analysis of Trial Observer Configuration with Full Independence

Usage

S3 method for class 'trial.fi'
ddf(
dsmodel = NULL,
mrmodel,
data,
method,
meta.data = list(),
control = list(),
call = ""

)

Arguments

dsmodel not used
mrmodel mark-recapture model specification
data analysis dataframe
method analysis method; only needed if this function called from ddf.trial

meta.data list containing settings controlling data structure
control list containing settings controlling model fitting
call original function call used to call ddf

Details

The mark-recapture data derived from a trial observer distance sampling survey can be used to
derive a conditional detection function (p_1(y)) for observer 1 based on trials (observations) from
observer 2. It is a conditional detection function because detection probability for observer 1 is
based on seeing or not seeing observations made by observer 2. Thus, p_1(y) is estimated by
p_1|2(y). If detections by the observers are independent (full independence) then p_1(y)=p_1|2(y)
for each distance y. In fitting the detection functions the likelihood given by eq 6.12 or 6.17 in
Laake and Borchers (2004) is used. That analysis does not require the usual distance sampling
assumption that perpendicular distances are uniformly distributed based on line placement that is
random relative to animal distribution. However, that assumption is used in computing predicted
detection probability which is averaged based on a uniform distribution (see eq 6.13 of Laake and
Borchers 2004).
For a complete description of each of the calling arguments, see ddf. The argument model in
this function is the same as mrmodel in ddf. The argument dataname is the name of the dataframe
specified by the argument data in ddf. The arguments control,meta.data,and method are defined
the same as in ddf.

DeltaMethod 39

Value

result: a trial.fi model object

Author(s)

Jeff Laake

References

Laake, J.L. and D.L. Borchers. 2004. Methods for incomplete detection at distance zero. In:
Advanced Distance Sampling, eds. S.T. Buckland, D.R.Anderson, K.P. Burnham, J.L. Laake, D.L.
Borchers, and L. Thomas. Oxford University Press.

See Also

ddf.trial, summary.trial.fi, coef.trial.fi, plot.trial.fi, gof.trial.fi

DeltaMethod Numeric Delta Method approximation for the variance-covariance
matrix

Description

Computes delta method variance-covariance matrix of results of any generic function fct that com-
putes a vector of estimates as a function of a set of estimated parameters par.

Usage

DeltaMethod(par, fct, vcov, delta, ...)

Arguments

par vector of parameter values at which estimates should be constructed
fct function that constructs estimates from parameters par
vcov variance-covariance matrix of the parameters
delta proportional change in parameters used to numerically estimate first derivative

with central-difference formula (ignored)
... any additional arguments needed by fct

Details

The delta method (aka propagation of errors is based on Taylor series approximation - see Seber’s
book on Estimation of Animal Abundance). It uses the first derivative of fct with respect to par. It
also uses the variance-covariance matrix of the estimated parameters which is derived in estimating
the parameters and is an input argument.

The first argument of fct should be par which is a vector of parameter estimates. It should return a
single value (or vector) of estimate(s). The remaining arguments of fct if any can be passed to fct
by including them at the end of the call to DeltaMethod as name=value pairs.

40 det.tables

Value

a list with values

variance estimated variance-covariance matrix of estimates derived by fct

partial matrix (or vector) of partial derivatives of fct with respect to the parameters
par

Note

This is a generic function that can be used in any setting beyond the mrds package. However this is
an internal function for mrds and the user does not need to call it explicitly.

Author(s)

Jeff Laake and David L Miller

det.tables Observation detection tables

Description

Creates a series of tables for dual observer data that shows the number missed and detected for each
observer within defined distance classes.

Usage

det.tables(model, nc = NULL, breaks = NULL)

Arguments

model fitted model from ddf

nc number of equal-width bins for histogram

breaks user define breakpoints

Value

list object of class "det.tables"

Observer1 table for observer 1

Observer2 table for observer 2

Duplicates histogram counts for duplicates

Pooled histogram counts for all observations by either observer

Obs1_2 table for observer 1 within subset seen by observer 2

Obs2_1 table for observer 2 within subset seen by observer 1

detfct.fit 41

Author(s)

Jeff Laake

Examples

data(book.tee.data)
region <- book.tee.data$book.tee.region
egdata <- book.tee.data$book.tee.dataframe
samples <- book.tee.data$book.tee.samples
obs <- book.tee.data$book.tee.obs
xx <- ddf(mrmodel=~glm(formula=~distance*observer),

dsmodel=~mcds(key="hn", formula=~sex),
data=egdata, method="io", meta.data=list(width=4))

tabs <- det.tables(xx, breaks=c(0, 0.5, 1, 2, 3, 4))
par(mfrow=c(2, 2))
plot(tabs, new=FALSE, which=c(1, 2, 5, 6))

detfct.fit Fit detection function using key-adjustment functions

Description

Fit detection function to observed distances using the key-adjustment function approach. If ad-
justment functions are included it will alternate between fitting parameters of key and adjustment
functions and then all parameters much like the approach in the CDS and MCDS Distance FOR-
TRAN code. To do so it calls detfct.fit.opt which uses the R optim function which does not
allow non-linear constraints so inclusion of adjustments does allow the detection function to be
non-monotone.

Usage

detfct.fit(ddfobj, optim.options, bounds, misc.options)

Arguments

ddfobj detection function object

optim.options control options for optim

bounds bounds for the parameters

misc.options miscellaneous options

Value

fitted detection function model object with the following list structure

par final parameter vector

value final negative log likelihood value

42 detfct.fit.opt

counts number of function evaluations

convergence see codes in optim

message string about convergence

hessian hessian evaluated at final parameter values

aux a list with 20 elements

• maxit: maximum number of iterations allowed for optimization
• lower: lower bound values for parameters
• upper: upper bound values for parameters
• setlower: TRUE if they are user set bounds
• setupper: TRUE if they are user set bounds
• point: TRUE if point counts and FALSE if line transect
• int.range: integration range values
• showit: integer value that determines information printed during iteration
• silent: option to silence errors from detfct.fit.opt
• integral.numeric if TRUE compute logistic integrals numerically
• breaks: breaks in distance for defined fixed bins for analysis
• maxiter: maximum iterations used
• refit: if TRUE, detection function will be fitted more than once if parameters

are at a boundary or when convergence is not achieved
• nrefits: number of refittings
• mono: if TRUE monotonicity will be enforced
• mono.strict: if TRUE, then strict monotonicity is enforced; otherwise weak
• width: radius of point count or half-width of strip
• standardize: if TRUE, detection function is scaled so g(0)=1
• ddfobj: distance detection function object; see create.ddfobj

• bounded: TRUE if parameters ended up a boundary (I think)
• model: list of formulas for detection function model (probably can remove

this)

Author(s)

Dave Miller; Jeff Laake

detfct.fit.opt Fit detection function using key-adjustment functions

Description

Fit detection function to observed distances using the key-adjustment function approach. If ad-
justment functions are included it will alternate between fitting parameters of key and adjustment
functions and then all parameters much like the approach in the CDS and MCDS Distance FOR-
TRAN code. This function is called by the driver function detfct.fit, then calls optimx function.

detfct.fit.opt 43

Usage

detfct.fit.opt(ddfobj, optim.options, bounds, misc.options, fitting = "all")

Arguments

ddfobj detection function object
optim.options control options for optim
bounds bounds for the parameters
misc.options miscellaneous options
fitting character string with values "all","key","adjust" to determine which parameters

are allowed to vary in the fitting

Value

fitted detection function model object with the following list structure

par final parameter vector
value final negative log likelihood value
counts number of function evaluations
convergence see codes in optim
message string about convergence
hessian hessian evaluated at final parameter values
aux a list with 20 elements

• maxit: maximum number of iterations allowed for optimization
• lower: lower bound values for parameters
• upper: upper bound values for parameters
• setlower: TRUE if they are user set bounds
• setupper: TRUE if they are user set bounds
• point: TRUE if point counts and FALSE if line transect
• int.range: integration range values
• showit: integer value that determines information printed during iteration
• integral.numeric if TRUE compute logistic integrals numerically
• breaks: breaks in distance for defined fixed bins for analysis
• maxiter: maximum iterations used
• refit: if TRUE, detection function will be fitted more than once if parameters

are at a boundary or when convergence is not achieved
• nrefits: number of refittings
• mono: if TRUE, monotonicity will be enforced
• mono.strict: if TRUE, then strict monotonicity is enforced; otherwise weak
• width: radius of point count or half-width of strip
• standardize: if TRUE, detection function is scaled so g(0)=1
• ddfobj: distance detection function object; see create.ddfobj

• bounded: TRUE if estimated parameters are at the bounds
• model: list of formulas for detection function model (probably can remove

this)

44 dht

Author(s)

Dave Miller; Jeff Laake; Lorenzo Milazzo

dht Density and abundance estimates and variances

Description

Compute density and abundance estimates and variances based on Horvitz-Thompson-like estima-
tor.

Usage

dht(
model,
region.table,
sample.table,
obs.table = NULL,
subset = NULL,
se = TRUE,
options = list()

)

Arguments

model ddf model object

region.table data.frame of region records. Two columns: Region.Label and Area. If only
density is required, one can set Area=0 for all regions.

sample.table data.frame of sample records. Three columns: Region.Label, Sample.Label,
Effort.

obs.table data.frame of observation records with fields: object, Region.Label, and
Sample.Label which give links to sample.table, region.table and the data
records used in model. Not necessary if the data.frame used to create the
model contains Region.Label, Sample.Label columns.

subset subset statement to create obs.table

se if TRUE computes standard errors, coefficient of variation and confidence inter-
vals (based on log-normal approximation). See "Uncertainty" below.

options a list of options that can be set, see "dht options", below.

dht 45

Details

Density and abundance within the sampled region is computed based on a Horvitz-Thompson-
like estimator for groups and individuals (if a clustered population) and this is extrapolated to the
entire survey region based on any defined regional stratification. The variance is based on replicate
samples within any regional stratification. For clustered populations, E(s) and its standard error
are also output.

Abundance is estimated with a Horvitz-Thompson-like estimator (Huggins 1989, 1991; Borchers
et al 1998; Borchers and Burnham 2004). The abundance in the sampled region is simply 1/p1 +
1/p2 + ... + 1/pn where pi is the estimated detection probability for the ith detection of n total
observations. It is not strictly a Horvitz-Thompson estimator because the pi are estimated and
not known. For animals observed in tight clusters, that estimator gives the abundance of groups
(group=TRUE in options) and the abundance of individuals is estimated as s1/p1 + s2/p2 + ... +
sn/pn, where si is the size (e.g., number of animals in the group) of each observation (group=FALSE
in options).

Extrapolation and estimation of abundance to the entire survey region is based on either a random
sampling design or a stratified random sampling design. Replicate samples (lines) are specified
within regional strata region.table, if any. If there is no stratification, region.table should
contain only a single record with the Area for the entire survey region. The sample.table is linked
to the region.table with the Region.Label. The obs.table is linked to the sample.table
with the Sample.Label and Region.Label. Abundance can be restricted to a subset (e.g., for a
particular species) of the population by limiting the list the observations in obs.table to those in
the desired subset. Alternatively, if Sample.Label and Region.Label are in the data.frame used
to fit the model, then a subset argument can be given in place of the obs.table. To use the subset
argument but include all of the observations, use subset=1==1 to avoid creating an obs.table.

In extrapolating to the entire survey region it is important that the unit measurements be consis-
tent or converted for consistency. A conversion factor can be specified with the convert.units
variable in the options list. The values of Area in region.table, must be made consistent with
the units for Effort in sample.table and the units of distance in the data.frame that was
analyzed. It is easiest to do if the units of Area is the square of the units of Effort and then
it is only necessary to convert the units of distance to the units of Effort. For example, if
Effort was entered in kilometres and Area in square kilometres and distance in metres then
using options=list(convert.units=0.001) would convert metres to kilometres, density would
be expressed in square kilometres which would then be consistent with units for Area. However,
they can all be in different units as long as the appropriate composite value for convert.units is
chosen. Abundance for a survey region can be expressed as: A*N/a where A is Area for the survey
region, N is the abundance in the covered (sampled) region, and a is the area of the sampled re-
gion and is in units of Effort * distance. The sampled region a is multiplied by convert.units,
so it should be chosen such that the result is in the same units of Area. For example, if Effort
was entered in kilometres, Area in hectares (100m x 100m) and distance in metres, then using
options=list(convert.units=10) will convert a to units of hectares (100 to convert metres to
100 metres for distance and .1 to convert km to 100m units).

The argument options is a list of variable=value pairs that set options for the analysis. All but
two of these have been described above. pdelta should not need to be changed but was included
for completeness. It controls the precision of the first derivative calculation for the delta method
variance. If the option areas.supplied is TRUE then the covered area is assumed to be supplied in
the CoveredArea column of the sample data.frame.

46 dht

Value

list object of class dht with elements:

clusters result list for object clusters

individuals result list for individuals

Expected.S data.frame of estimates of expected cluster size with fields Region, Expected.S
and se.Expected.S If each cluster size=1, then the result only includes indi-
viduals and not clusters and Expected.S.

The list structure of clusters and individuals are the same:

bysample data.frame giving results for each sample; Nchat is the estimated abundance
within the sample and Nhat is scaled by surveyed area/covered area within that
region

summary data.frame of summary statistics for each region and total

N data.frame of estimates of abundance for each region and total

D data.frame of estimates of density for each region and total

average.p average detection probability estimate

cormat correlation matrix of regional abundance/density estimates and total (if more
than one region)

vc list of 3: total variance-covariance matrix, detection function component of vari-
ance and encounter rate component of variance. For detection the v-c matrix and
partial vector are returned

Nhat.by.sample another summary of Nhat by sample used by dht.se

Uncertainty

If the argument se=TRUE, standard errors for density and abundance is computed. Coefficient of
variation and log-normal confidence intervals are constructed using a Satterthwaite approximation
for degrees of freedom (Buckland et al. 2001 p. 90). The function dht.se computes the variance
and interval estimates.

The variance has two components:

• variation due to uncertainty from estimation of the detection function parameters;

• variation in abundance due to random sample selection;

The first component (model parameter uncertainty) is computed using a delta method estimate of
variance (Huggins 1989, 1991, Borchers et al. 1998) in which the first derivatives of the abundance
estimator with respect to the parameters in the detection function are computed numerically (see
DeltaMethod).

The second component (encounter rate variance) can be computed in one of several ways depending
on the form taken for the encounter rate and the estimator used. To begin with there three possible
values for varflag to calculate encounter rate:

• 0 uses a binomial variance for the number of observations (equation 13 of Borchers et al.
1998). This estimator is only useful if the sampled region is the survey region and the objects
are not clustered; this situation will not occur very often;

dht 47

• 1 uses the encounter rate n/L (objects observed per unit transect) from Buckland et al. (2001)
pg 78-79 (equation 3.78) for line transects (see also Fewster et al, 2009 estimator R2). This
variance estimator is not appropriate if size or a derivative of size is used in the detection
function;

• 2 is the default and uses the encounter rate estimator N̂/L (estimated abundance per unit
transect) suggested by Innes et al (2002) and Marques & Buckland (2004).

In general if any covariates are used in the models, the default varflag=2 is preferable as the
estimated abundance will take into account variability due to covariate effects. If the population is
clustered the mean group size and standard error is also reported.

For options 1 and 2, it is then possible to choose one of the estimator forms given in Fewster et
al (2009) for line transects: "R2", "R3", "R4", "S1", "S2", "O1", "O2" or "O3" by specifying
the ervar= option (default "R2"). For points, either the "P2" or "P3" estimator can be selected
(>=mrds 2.3.0 default "P2", <= mrds 2.2.9 default "P3"). See varn and Fewster et al (2009) for
further details on these estimators.

dht options

Several options are available to control calculations and output:

ci.width Confidence interval width, expressed as a decimal between 0 and 1 (default 0.95, giving
a 95% CI)

pdelta delta value for computing numerical first derivatives (Default: 0.001)

varflag 0,1,2 (see "Uncertainty") (Default: 2)

convert.units multiplier for width to convert to units of length (Default: 1)

ervar encounter rate variance type (see "Uncertainty" and type argument of varn). (Default: "R2"
for lines and "P2" for points)

Author(s)

Jeff Laake, David L Miller

References

Borchers, D.L., S.T. Buckland, P.W. Goedhart, E.D. Clarke, and S.L. Hedley. 1998. Horvitz-
Thompson estimators for double-platform line transect surveys. Biometrics 54: 1221-1237.

Borchers, D.L. and K.P. Burnham. General formulation for distance sampling pp 10-11 In: Ad-
vanced Distance Sampling, eds. S.T. Buckland, D.R.Anderson, K.P. Burnham, J.L. Laake, D.L.
Borchers, and L. Thomas. Oxford University Press.

Buckland, S.T., D.R.Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. 2001.
Introduction to Distance Sampling: Estimating Abundance of Biological Populations. Oxford Uni-
versity Press.

Fewster, R.M., S.T. Buckland, K.P. Burnham, D.L. Borchers, P.E. Jupp, J.L. Laake and L. Thomas.
2009. Estimating the encounter rate variance in distance sampling. Biometrics 65: 225-236.

Huggins, R.M. 1989. On the statistical analysis of capture experiments. Biometrika 76:133-140.

Huggins, R.M. 1991. Some practical aspects of a conditional likelihood approach to capture exper-
iments. Biometrics 47: 725-732.

48 dht.deriv

Innes, S., M.P. Heide-Jorgensen, J.L. Laake, K.L. Laidre, H.J. Cleator, P. Richard, and R.E.A.
Stewart. 2002. Surveys of belugas and narwhals in the Canadian High Arctic in 1996. NAMMCO
Scientific Publications 4: 169-190.

Marques, F.F.C. and S.T. Buckland. 2004. Covariate models for the detection function. In: Ad-
vanced Distance Sampling, eds. S.T. Buckland, D.R.Anderson, K.P. Burnham, J.L. Laake, D.L.
Borchers, and L. Thomas. Oxford University Press.

See Also

print.dht dht.se

dht.deriv Computes abundance estimates at specified parameter values using
Horvitz-Thompson-like estimator

Description

Computes abundance at specified values of parameters for numerical computation of first derivative
with respect to parameters in detection function. An internal function called by DeltaMethod which
is invoked by dht.se

Usage

dht.deriv(par, model, obs, samples, options = list())

Arguments

par detection function parameter values
model ddf model object
obs observations table
samples samples table
options list of options as specified in dht

Value

vector of abundance estimates at values of parameters specified in par

Note

Internal function; not intended to be called by user

Author(s)

Jeff Laake

See Also

dht, dht.se, DeltaMethod

dht.se 49

dht.se Variance and confidence intervals for density and abundance esti-
mates

Description

Computes standard error, cv, and log-normal confidence intervals for abundance and density within
each region (if any) and for the total of all the regions. It also produces the correlation matrix for
regional and total estimates.

Usage

dht.se(
model,
region.table,
samples,
obs,
options,
numRegions,
estimate.table,
Nhat.by.sample

)

Arguments

model ddf model object

region.table table of region values

samples table of samples(replicates)

obs table of observations

options list of options that can be set (see dht)

numRegions number of regions

estimate.table table of estimate values

Nhat.by.sample estimated abundances by sample

Details

The variance has two components:

• variation due to uncertainty from estimation of the detection function parameters;

• variation in abundance due to random sample selection;

The first component (model parameter uncertainty) is computed using a delta method estimate of
variance (Huggins 1989, 1991, Borchers et al. 1998) in which the first derivatives of the abundance
estimator with respect to the parameters in the detection function are computed numerically (see
DeltaMethod).

50 dht.se

The second component (encounter rate variance) can be computed in one of several ways depending
on the form taken for the encounter rate and the estimator used. To begin with there three possible
values for varflag to calculate encounter rate:

• 0 uses a binomial variance for the number of observations (equation 13 of Borchers et al.
1998). This estimator is only useful if the sampled region is the survey region and the objects
are not clustered; this situation will not occur very often;

• 1 uses the encounter rate n/L (objects observed per unit transect) from Buckland et al. (2001)
pg 78-79 (equation 3.78) for line transects (see also Fewster et al, 2009 estimator R2). This
variance estimator is not appropriate if size or a derivative of size is used in the detection
function;

• 2 is the default and uses the encounter rate estimator N̂/L (estimated abundance per unit
transect) suggested by Innes et al (2002) and Marques & Buckland (2004).

In general if any covariates are used in the models, the default varflag=2 is preferable as the
estimated abundance will take into account variability due to covariate effects. If the population is
clustered the mean group size and standard error is also reported.

For options 1 and 2, it is then possible to choose one of the estimator forms given in Fewster et
al (2009). For line transects: "R2", "R3", "R4", "S1", "S2", "O1", "O2" or "O3" can be used by
specifying the ervar= option (default "R2"). For points, either the "P2" or "P3" estimator can
be selected (>=mrds 2.3.0 default "P2", <= mrds 2.2.9 default "P3"). See varn and Fewster et al
(2009) for further details on these estimators.

Exceptions to the above occur if there is only one sample in a stratum. In that case it uses Poisson
assumption (V ar(x) = x) and it assumes a known variance so z = 1.96 is used for critical value.
In all other cases the degrees of freedom for the t-distribution assumed for the log(abundance) or
log(density) is based on the Satterthwaite approximation (Buckland et al. 2001 pg 90) for the de-
grees of freedom (df). The df are weighted by the squared cv in combining the two sources of
variation because of the assumed log-normal distribution because the components are multiplica-
tive. For combining df for the sampling variance across regions they are weighted by the variance
because it is a sum across regions.

A non-zero correlation between regional estimates can occur from using a common detection func-
tion across regions. This is reflected in the correlation matrix of the regional and total estimates
which is given in the value list. It is only needed if subtotals of regional estimates are needed.

Value

List with 2 elements:

estimate.table completed table with se, cv and confidence limits

vc correlation matrix of estimates

Note

This function is called by dht and it is not expected that the user will call this function directly but
it is documented here for completeness and for anyone expanding the code or using this function in
their own code.

ds.function 51

Author(s)

Jeff Laake

References

see dht

See Also

dht, print.dht

ds.function Distance Sampling Functions

Description

Computes values of conditional and unconditional detection functions and probability density func-
tions for for line/point data for single observer or dual observer in any of the 3 configurations
(io,trial,rem).

Usage

ds.function(
model,
newdata = NULL,
obs = "All",
conditional = FALSE,
pdf = TRUE,
finebr

)

Arguments

model model object

newdata dataframe at which to compute values; if NULL uses fitting data

obs 1 or 2 for observer 1 or 2, 3 for duplicates, "." for combined and "All" to return
all of the values

conditional if FALSE, computes p(x) based on distance detection function and if TRUE
based on mr detection function

pdf if FALSE, returns p(x) and if TRUE, returns p(x)*pi(x)/integral p(x)*pi(x)

finebr fine break values over which line is averaged

Details

Placeholder – Not functional —-

52 flnl

Value

List containing

xgrid grid of distance values

values average detection fct values at the xgrid values

Author(s)

Jeff Laake

flnl Log-likelihood computation for distance sampling data

Description

For a specific set of parameter values, it computes and returns the negative log-likelihood for the
distance sampling likelihood for distances that are unbinned, binned and a mixture of both. The
function flnl is the function minimized using optim from within ddf.ds.

Usage

flnl(fpar, ddfobj, misc.options, fitting = "all")

Arguments

fpar parameter values for detection function at which negative log-likelihood should
be evaluated

ddfobj distance sampling object

misc.options a list with the following elements: width transect width; int.range the in-
tegration range for observations; showit 0 to 3 controls level debug output;
integral.numeric if TRUE integral is computed numerically rather than ana-
lytically; point is this a point transect?

fitting character "key" if only fitting key function parameters, "adjust" if fitting ad-
justment parameters or "all" to fit both

Details

Most of the computation is in flpt.lnl in which the negative log-likelihood is computed for each
observation. flnl is a wrapper that optionally outputs intermediate results and sums the individual
log-likelihood values.

flnl is the main routine that manipulates the parameters using getpar to handle fitting of key,
adjustment or all of the parameters. It then calls flpt.lnl to do the actual computation of the
likelihood. The probability density function for point counts is fr and for line transects is fx.
fx=g(x)/mu (where g(x) is the detection function); whereas, f(r)=r*g(r)/mu where mu in both cases
is the normalizing constant. Both functions are in source code file for link{detfct} and are called
from distpdf and the integral calculations are made with integratepdf.

flt.var 53

Value

negative log-likelihood value at the parameter values specified in fpar

Note

These are internal functions used by ddf.ds to fit distance sampling detection functions. It is not
intended for the user to invoke these functions but they are documented here for completeness.

Author(s)

Jeff Laake, David L Miller

See Also

flt.var, detfct

flt.var Hessian computation for fitted distance detection function model pa-
rameters

Description

Computes hessian to be used for variance-covariance matrix. The hessian is the outer product of
the vector of first partials (see pg 62 of Buckland et al 2002).

Usage

flt.var(ddfobj, misc.options)

Arguments

ddfobj distance sampling object

misc.options width-transect width (W); int.range-integration range for observations; showit-
0 to 3 controls level of iteration printing; integral.numeric-if TRUE integral is
computed numerically rather than analytically

Value

variance-covariance matrix of parameters in the detection function

Note

This is an internal function used by ddf.ds to fit distance sampling detection functions. It is not
intended for the user to invoke this function but it is documented here for completeness.

Author(s)

Jeff Laake and David L Miller

54 getpar

References

Buckland et al. 2002

See Also

flnl,flpt.lnl,ddf.ds

g0 Compute value of p(0) using a logit formulation

Description

Compute value of p(0) using a logit formulation

Usage

g0(beta, z)

Arguments

beta logistic parameters

z design matrix of covariate values

Value

vector of p(0) values

Author(s)

Jeff Laake

getpar Extraction and assignment of parameters to vector

Description

Extracts parameters of a particular type (scale, shape, adjustments or g0 (p(0))) from the vector of
parameters in ddfobj. All of the parameters are kept in a single vector for optimization even though
they have very different uses. assign.par parses them from the vector based on a known structure
and assigns them into ddfobj. getpar extracts the requested types to be extracted from ddfobj.

Usage

getpar(ddfobj, fitting = "all", index = FALSE)

gof.ds 55

Arguments

ddfobj distance sampling object (see create.ddfobj)

fitting character string which is either "all","key","adjust" which determines which pa-
rameters are retrieved

index logical that determines whether parameters are returned (FALSE) or starting
indices in parameter vector for scale, shape, adjustment parameters

Value

index==FALSE, vector of parameters that were requested or index==TRUE, vector of 3 indices for
shape, scale, adjustment

Note

Internal functions not intended to be called by user.

Author(s)

Jeff Laake

See Also

assign.par

gof.ds Compute chi-square goodness-of-fit test for ds models

Description

Compute chi-square goodness-of-fit test for ds models

Usage

gof.ds(model, breaks = NULL, nc = NULL)

Arguments

model ddf model object

breaks distance cut points

nc number of distance classes

Value

list with chi-square value, df and p-value

56 gstdint

Author(s)

Jeff Laake

See Also

ddf.gof

gstdint Integral of pdf of distances

Description

Computes the integral of distpdf with scale=1 (stdint=TRUE) or specified scale (stdint=FALSE).

Usage

gstdint(
x,
ddfobj,
index = NULL,
select = NULL,
width,
standardize = TRUE,
point = FALSE,
stdint = TRUE,
doeachint = FALSE,
left = left

)

Arguments

x lower, upper value for integration

ddfobj distance detection function specification

index specific data row index

select logical vector for selection of data values

width truncation width

standardize if TRUE, divide through by the function evaluated at 0

point logical to determine if point (TRUE) or line transect(FALSE)

stdint if TRUE, scale=1 otherwise specified scale used

doeachint if TRUE perform integration using integrate

left left truncation width

Value

vector of integral values of detection function

histline 57

Note

This is an internal function that is not intended to be invoked directly.

Author(s)

Jeff Laake and David L Miller

histline Plot histogram line

Description

Takes bar heights (height) and cutpoints (breaks), and constructs a line-only histogram from them
using the function plot() (if lineonly==FALSE) or lines() (if lineonly==TRUE).

Usage

histline(
height,
breaks,
lineonly = FALSE,
outline = FALSE,
ylim = range(height),
xlab = "x",
ylab = "y",
det.plot = FALSE,
add = FALSE,
...

)

Arguments

height heights of histogram bars

breaks cutpoints for x

lineonly if TRUE, drawn with plot; otherwise with lines to allow addition of current plot

outline if TRUE, only outline of histogram is plotted

ylim limits for y axis

xlab label for x axis

ylab label for y axis

det.plot if TRUE, plot is of detection so yaxis limited to unit interval

add should this plot add to a previous window

... Additional unspecified arguments for plot

58 integratedetfct.logistic

Value

None

Author(s)

Jeff Laake and David L Miller

integratedetfct.logistic

Integrate a logistic detection function

Description

Integrates a logistic detection function; a separate function is used because in certain cases the
integral can be solved analytically and also because the scale trick used with the half-normal and
hazard rate doesn’t work with the logistic.

Usage

integratedetfct.logistic(x, scalemodel, width, theta1, integral.numeric, w)

Arguments

x logistic design matrix values

scalemodel scale model for logistic

width transect width

theta1 parameters for logistic

integral.numeric

if TRUE computes numerical integral value

w design covariates

Value

vector of integral values

Author(s)

Jeff Laake

integratelogistic.analytic 59

integratelogistic.analytic

Analytically integrate logistic detection function

Description

Computes integral (analytically) over x from 0 to width of a logistic detection function; For refer-
ence see integral #526 in CRC Std Math Table 24th ed

Usage

integratelogistic.analytic(x, models, beta, width)

Arguments

x matrix of data

models list of model formulae

beta parameters of logistic detection function

width transect half-width

Author(s)

Jeff Laake

integratepdf Numerically integrate pdf of observed distances over specified ranges

Description

Computes integral of pdf of observed distances over x for each observation. The method of compu-
tation depends on argument switches set and the type of detection function.

Usage

integratepdf(
ddfobj,
select,
width,
int.range,
standardize = TRUE,
point = FALSE,
left = 0,
doeachint = FALSE

)

60 io.glm

Arguments

ddfobj distance detection function specification

select logical vector for selection of data values

width truncation width

int.range integration range matrix; vector is converted to matrix

standardize logical used to decide whether to divide through by the function evaluated at 0

point logical to determine if point count (TRUE) or line transect (FALSE)

left left truncation width

doeachint calculate each integral numerically

Value

vector of integral values - one for each observation

Author(s)

Jeff Laake & Dave Miller

io.glm Iterative offset GLM/GAM for fitting detection function

Description

Provides an iterative algorithm for finding the MLEs of detection (capture) probabilities for a two-
occasion (double observer) mark-recapture experiment using standard algorithms GLM/GAM and
an offset to compensate for conditioning on the set of observations. While the likelihood can be
formulated and solved numerically, the use of GLM/GAM provides all of the available tools for
fitting, predictions, plotting etc without any further development.

Usage

io.glm(
datavec,
fitformula,
eps = 1e-05,
iterlimit = 500,
GAM = FALSE,
gamplot = TRUE

)

is.linear.logistic 61

Arguments

datavec dataframe

fitformula logit link formula

eps convergence criterion

iterlimit maximum number of iterations allowed

GAM uses GAM instead of GLM for fitting

gamplot set to TRUE to get a gam plot object if GAM=TRUE

Details

Note that currently the code in this function for GAMs has been commented out until the remainder
of the mrds package will work with GAMs. This is an internal function that is used as by ddf.io.fi
to fit mark-recapture models with 2 occasions. The argument mrmodel is used for fitformula.

Value

list of class("ioglm","glm","lm") or class("ioglm","gam")

glmobj GLM or GAM object

offsetvalue offsetvalues from iterative fit

plotobj gam plot object (if GAM & gamplot==TRUE, else NULL)

Author(s)

Jeff Laake, David Borchers, Charles Paxton

References

Buckland, S.T., J.M. breiwick, K.L. Cattanach, and J.L. Laake. 1993. Estimated population size of
the California gray whale. Marine Mammal Science, 9:235-249.

Burnham, K.P., S.T. Buckland, J.L. Laake, D.L. Borchers, T.A. Marques, J.R.B. Bishop, and L.
Thomas. 2004. Further topics in distance sampling. pp: 360-363. In: Advanced Distance Sampling,
eds. S.T. Buckland, D.R.Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas.
Oxford University Press.

is.linear.logistic Collection of functions for logistic detection functions

Description

These functions are used to test whether a logistic detection function is a linear function of distance
(is.linear.logistic) or is constant (varies by distance but no other covariates) is.logistic.constant).
Based on these tests, the most appropriate manner for integrating the detection function with respect
to distance is chosen. The integrals are needed to estimate the average detection probability for a
given set of covariates.

62 is.logistic.constant

Usage

is.linear.logistic(xmat, g0model, zdim, width)

Arguments

xmat data matrix

g0model logit model

zdim number of columns in design matrix

width transect width

Details

If the logit is linear in distance then the integral can be computed analytically. If the logit is constant
or only varies by distance then only one integral needs to be computed rather than an integral for
each observation.

Value

Logical TRUE if condition holds and FALSE otherwise

Author(s)

Jeff Laake

is.logistic.constant Is a logit model constant for all observations?

Description

Determines whether the specified logit model is constant for all observations. If it is constant then
only one integral needs to be computed.

Usage

is.logistic.constant(xmat, g0model, width)

Arguments

xmat data

g0model logit model

width transect width

Value

logical value

keyfct.th1 63

Author(s)

Jeff Laake

keyfct.th1 Threshold key function

Description

Threshold key function

Usage

keyfct.th1(distance, key.scale, key.shape)

Arguments

distance perpendicular distance vector

key.scale vector of scale values

key.shape vector of shape values

Value

vector of probabilities

keyfct.th2 Threshold key function

Description

Threshold key function

Usage

keyfct.th2(distance, key.scale, key.shape)

Arguments

distance perpendicular distance vector

key.scale vector of scale values

key.shape vector of shape values

Value

vector of probabilities

64 keyfct.tpn

keyfct.tpn Two-part normal key function

Description

The two-part normal detection function of Becker and Christ (2015). Either side of an estimated
apex in the distance histogram has a half-normal distribution, with differing scale parameters. Co-
variates may be included but affect both sides of the function.

Usage

keyfct.tpn(distance, ddfobj)

Arguments

distance perpendicular distance vector

ddfobj meta object containing parameters, design matrices etc

Details

Two-part normal models have 2 important parameters:

• The apex, which estimates the peak in the detection function (where g(x)=1). The log apex is
reported in summary results, so taking the exponential of this value should give the peak in the
plotted function (see examples).

• The parameter that controls the difference between the sides .dummy_apex_side, which is
automatically added to the formula for a two-part normal model. One can add interactions
with this variable as normal, but don’t need to add the main effect as it will be automatically
added.

Value

a vector of probabilities that the observation were detected given they were at the specified distance
and assuming that g(mu)=1

Author(s)

Earl F Becker, David L Miller

References

Becker, E. F., & Christ, A. M. (2015). A Unimodal Model for Double Observer Distance Sampling
Surveys. PLOS ONE, 10(8), e0136403. doi:10.1371/journal.pone.0136403

https://doi.org/10.1371/journal.pone.0136403

lfbcvi 65

lfbcvi Black-capped vireo mark-recapture distance sampling analysis

Description

These data represent avian point count surveys conducted at 453 point sample survey locations on
the 24,000 (approx) live-fire region of Fort Hood in central Texas. Surveys were conducted by
independent double observers (2 per survey occasion) and as such we had a maximum of 3 paired
survey histories, giving a maximum of 6 sample occasions (see MacKenzie et al. 2006, MacKenzie
and Royle 2005, and Laake et al. 2011 for various sample survey design details). At each point,
we surveyed for 5 minutes (technically broken into 3 time intervals of 2, 2, and 1 minutes; not used
here) and we noted detections by each observer and collected distance to each observation within a
set of distance bins (0-25, 25-50, 50-75, 75-100m) of the target species (Black-capped vireo’s in this
case) for each surveyor. Our primary focus was to use mark-recapture distance sampling methods
to estimate density of Black-capped vireo’s, and to estimate detection rates for the mark-recapture,
distance, and composite model.

Format

The format is a data frame with the following covariate metrics.

PointID Unique identifier for each sample location; locations are the same for both species

VisitNumber Visit number to the point

Species Species designation, either Golden-cheeked warbler (GW) or Black-capped Vireo (BV)

Distance Distance measure, which is either NA (representing no detection), or the median of the
binned detection distances

PairNumber ID value indicating which observers were paired for that sampling occasion

Observer Observer ID, either primary(1), or secondary (2)

Detected Detection of a bird, either 1 = detected, or 0 = not detected

Date Date of survey since 15 march 2011

Pred Predicted occupancy value for that survey hexagon based on Farrell et al. (2013)

Category Region.Label categorization, see mrds help file for details on data structure

Effort Amount of survey effort at the point

Day Number of days since 15 March 2011

ObjectID Unique ID for each paired observations

Details

In addition to detailing the analysis used by Collier et al. (2013, In Review), this example docu-
ments the use of mrds for avian point count surveys and shows how density models can be incor-
porated with occupancy models to develop spatially explicit density surface maps. For those that
are interested, for the distance sampling portion of our analysis, we used both conventional distance
sampling (cds) and multiple covariate distance sampling (mcds) with uniform and half-normal key

66 lfbcvi

functions. For the mark-recapture portion of our analysis, we tended to use covariates for distance
(median bin width), observer, and date of survey (days since 15 March 2011).

We combined our mrds density estimates via a Horvitz-Thompson styled estimator with the resource
selection function gradient developed in Farrell et al. (2013) and estimated density on an ~3.14ha
hexagonal grid across our study area, which provided a density gradient for the Fort Hood military
installation. Because there was considerable data manipulation needed for each analysis to structure
the data appropriately for use in mrds, rather than wrap each analysis in a single function, we have
provided both the Golden-cheeked warbler and Black-capped vireo analyses in their full detail. The
primary differences you will see will be changes to model structures and model outputs between
the two species.

Author(s)

Bret Collier and Jeff Laake

References

Farrell, S.F., B.A. Collier, K.L. Skow, A.M. Long, A.J. Campomizzi, M.L. Morrison, B. Hays, and
R.N. Wilkins. 2013. Using LiDAR-derived structural vegetation characteristics to develop high-
resolution, small-scale, species distribution models for conservation planning. Ecosphere 43(3):
42. http://dx.doi.org/10.1890/ES12-000352.1

Laake, J.L., B.A. Collier, M.L. Morrison, and R.N. Wilkins. 2011. Point-based mark recapture
distance sampling. Journal of Agricultural, Biological and Environmental Statistics 16: 389-408.

Collier, B.A., S.L. Farrell, K.L. Skow, A. M. Long, A.J. Campomizzi, K.B. Hays, J.L. Laake, M.L.
Morrison, and R.N. Wilkins. 2013. Spatially explicit density of endangered avian species in a
disturbed landscape. Auk, In Review.

Examples

Not run:
data(lfbcvi)
xy=cut(lfbcvi$Pred, c(-0.0001, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1),

labels=c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10"))
x=data.frame(lfbcvi, New=xy)

Note that I scaled the individual covariate of day-helps with
convergence issues
bird.data <- data.frame(object=x$ObjectID, observer=x$Observer,

detected=x$Detected, distance=x$Distance,
Region.Label=x$New, Sample.Label=x$PointID,
Day=(x$Day/max(x$Day)))

make observer a factor variable
bird.data$observer=factor(bird.data$observer)

Jeff Laake suggested this snippet to quickly create distance medians
which adds bin information to the bird.data dataframe

bird.data$distbegin=0
bird.data$distend=100

lfbcvi 67

bird.data$distend[bird.data$distance==12.5]=25
bird.data$distbegin[bird.data$distance==37.5]=25
bird.data$distend[bird.data$distance==37.5]=50
bird.data$distbegin[bird.data$distance==62.5]=50
bird.data$distend[bird.data$distance==62.5]=75
bird.data$distbegin[bird.data$distance==87.5]=75
bird.data$distend[bird.data$distance==87.5]=100

Removed all survey points with distance=NA for a survey event;
hence no observations for use in ddf() but needed later
bird.data=bird.data[complete.cases(bird.data),]

Manipulations on full dataset for various data.frame creation for
use in density estimation using dht()

#Samples dataframe
xx=x
x=data.frame(PointID=x$PointID, Species=x$Species,

Category=x$New, Effort=x$Effort)
x=x[!duplicated(x$PointID),]
point.num=table(x$Category)
samples=data.frame(PointID=x$PointID, Region.Label=x$Category,

Effort=x$Effort)
final.samples=data.frame(Sample.Label=samples$PointID,

Region.Label=samples$Region.Label,
Effort=samples$Effort)

#obs dataframe
obs=data.frame(ObjectID=xx$ObjectID, PointID=xx$PointID)
#used to get Region and Sample assigned to ObjectID
obs=merge(obs, samples, by=c("PointID", "PointID"))
obs=obs[!duplicated(obs$ObjectID),]
obs=data.frame(object=obs$ObjectID, Region.Label=obs$Region.Label,

Sample.Label=obs$PointID)

region.data=data.frame(Region.Label=c(1, 2, 3,4,5,6,7,8,9, 10),
Area=c(point.num[1]*3.14, point.num[2]*3.14,

point.num[3]*3.14, point.num[4]*3.14,
point.num[5]*3.14, point.num[6]*3.14,
point.num[7]*3.14, point.num[8]*3.14,
point.num[9]*3.14, point.num[10]*3.14))

Candidate Models

BV1=ddf(
dsmodel=~mcds(key="hn",formula=~1),
mrmodel=~glm(~distance),
data=bird.data,
method="io",
meta.data=list(binned=TRUE,point=TRUE,width=100,breaks=c(0,50,100)))

BV1FI=ddf(
dsmodel=~mcds(key="hn",formula=~1),
mrmodel=~glm(~distance),

68 lfbcvi

data=bird.data,
method="io.fi",
meta.data=list(binned=TRUE,point=TRUE,width=100,breaks=c(0,50,100)))

BV2=ddf(
dsmodel=~mcds(key="hr",formula=~1),
mrmodel=~glm(~distance),
data=bird.data,
method="io",
meta.data=list(binned=TRUE,point=TRUE,width=100,breaks=c(0,50,100)))

BV3=ddf(
dsmodel=~mcds(key="hn",formula=~1),
mrmodel=~glm(~distance+observer),
data=bird.data,
method="io",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

BV3FI=ddf(
dsmodel=~mcds(key="hn",formula=~1),
mrmodel=~glm(~distance+observer),
data=bird.data,
method="io.fi",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

BV4=ddf(
dsmodel=~mcds(key="hr",formula=~1),
mrmodel=~glm(~distance+observer),
data=bird.data,
method="io",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

BV5=ddf(
dsmodel=~mcds(key="hn",formula=~1),
mrmodel=~glm(~distance*observer),
data=bird.data,
method="io",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

BV5FI=ddf(
dsmodel=~mcds(key="hn",formula=~1),
mrmodel=~glm(~distance*observer),
data=bird.data,
method="io.fi",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

BV6=ddf(
dsmodel=~mcds(key="hr",formula=~1),
mrmodel=~glm(~distance*observer),
data=bird.data,
method="io",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

BV7=ddf(
dsmodel=~cds(key="hn",formula=~1),
mrmodel=~glm(~distance*Day),
data=bird.data,
method="io",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

BV7FI=ddf(
dsmodel=~cds(key="hn",formula=~1),

lfbcvi 69

mrmodel=~glm(~distance*Day),
data=bird.data,
method="io.fi",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

BV8=ddf(
dsmodel=~cds(key="hr",formula=~1),
mrmodel=~glm(~distance*Day),
data=bird.data,
method="io",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

BV9=ddf(
dsmodel=~mcds(key="hn",formula=~1),
mrmodel=~glm(~distance*observer*Day),
data=bird.data,
method="io",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

BV9FI=ddf(
dsmodel=~mcds(key="hn",formula=~1),
mrmodel=~glm(~distance*observer*Day),
data=bird.data,
method="io.fi",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

BV10=ddf(
dsmodel=~mcds(key="hr",formula=~1),
mrmodel=~glm(~distance*observer*Day),
data=bird.data,
method="io",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

#BV.DS=ddf(
dsmodel=~mcds(key="hn",formula=~1),
data=bird.data,
method="ds",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

#AIC table building code.
AIC = c(BV1$criterion, BV1FI$criterion, BV2$criterion, BV3$criterion,

BV3FI$criterion, BV4$criterion, BV5$criterion, BV5FI$criterion,
BV6$criterion, BV7$criterion, BV7FI$criterion, BV8$criterion,
BV9$criterion, BV9FI$criterion, BV10$criterion)

#creates a set of row names for me to check my grep() call below
rn = c("BV1", "BV1FI", "BV2", "BV3", "BV3FI", "BV4", "BV5", "BV5FI",

"BV6", "BV7", "BV7FI", "BV8", "BV9", "BV9FI", "BV10")

#Number parameters
k = c(length(BV1$par), length(BV1FI$par), length(BV2$par),

length(BV3$par), length(BV3FI$par), length(BV4$par),
length(BV5$par),length(BV5FI$par), length(BV6$par),
length(BV7$par), length(BV7FI$par), length(BV8$par),

#build AIC table
AIC.table=data.frame(AIC = AIC, rn=rn, k=k, dAIC = abs(min(AIC)-AIC) ,

likg=exp(-.5*(abs(min(AIC)-AIC))))

70 lfbcvi

#row.names(AIC.table)=grep("BV", ls(), value=TRUE)
AIC.table=AIC.table[with(AIC.table, order(-likg, -dAIC, AIC, k)),]
AIC.table=data.frame(AIC.table, wi=AIC.table$likg/sum(AIC.table$likg))
AIC.table

Model average N_hat_covered estimates
not very clean, but I wanted to show full process, need to use
collect.models and model.table here later on
estimate <- c(BV1$Nhat, BV1FI$Nhat, BV2$Nhat, BV3$Nhat, BV3FI$Nhat,

BV4$Nhat, BV5$Nhat, BV5FI$Nhat, BV6$Nhat, BV7$Nhat,
BV7FI$Nhat, BV8$Nhat, BV9$Nhat, BV9FI$Nhat, BV10$Nhat)

AIC.values=AIC

had to use str() to extract here as Nhat.se is calculated in
mrds:::summary.io, not in ddf(), so it takes a bit
std.err <- c(summary(BV1)$Nhat.se, summary(BV1FI)$Nhat.se,

summary(BV2)$Nhat.se, summary(BV3)$Nhat.se,
summary(BV3FI)$Nhat.se, summary(BV4)$Nhat.se,
summary(BV5)$Nhat.se, summary(BV5FI)$Nhat.se,
summary(BV6)$Nhat.se, summary(BV7)$Nhat.se,
summary(BV7FI)$Nhat.se,summary(BV8)$Nhat.se,
summary(BV9)$Nhat.se, summary(BV9FI)$Nhat.se,
summary(BV10)$Nhat.se)

End(Not run)

Not run:
#Not Run
#requires RMark
library(RMark)
#uses model.average structure to model average real abundance estimates for
#covered area of the surveys

mmi.list=list(estimate=estimate, AIC=AIC.values, se=std.err)
model.average(mmi.list, revised=TRUE)

#Not Run
#Summary for the top 2 models
#summary(BV5, se=TRUE)
#summary(BV5FI, se=TRUE)

#Not Run
#Best Model
#best.model=AIC.table[1,]

#Not Run
#GOF for models
#ddf.gof(BV5, breaks=c(0, 25, 50, 75, 100))

#Not Run
#Density estimation across occupancy categories
#out.BV=dht(BV5, region.data, final.samples, obs, se=TRUE,
options=list(convert.units=.01))

lfgcwa 71

#Plot--Not Run

#Composite Detection Function
#plot(BV5, which=3, showpoints=FALSE, angle=0, density=0, col="black", lwd=3,
main="Black-capped Vireo",xlab="Distance (m)", las=1, cex.axis=1.25,
cex.lab=1.25)

End(Not run)

lfgcwa Golden-cheeked warbler mark-recapture distance sampling analysis

Description

These data represent avian point count surveys conducted at 453 point sample survey locations on
the 24,000 (approx) live-fire region of Fort Hood in central Texas. Surveys were conducted by
independent double observers (2 per survey occasion) and as such we had a maximum of 3 paired
survey histories, giving a maximum of 6 sample occasions (see MacKenzie et al. 2006, MacKenzie
and Royle 2005, and Laake et al. 2011 for various sample survey design details). At each point,
we surveyed for 5 minutes (technically broken into 3 time intervals of 2, 2, and 1 minutes; not used
here) and we noted detections by each observer and collected distance to each observation within
a set of distance bins (0-50, 50-100m; Laake et al. 2011) of the target species (Golden-cheeked
warblers in this case) for each surveyor. Our primary focus was to use mark-recapture distance
sampling methods to estimate density of Golden-cheeked warblers, and to estimate detection rates
for the mark-recapture, distance, and composite model.

Format

The format is a data frame with the following covariate metrics.

PointID Unique identifier for each sample location; locations are the same for both species
VisitNumber Visit number to the point
Species Species designation, either Golden-cheeked warbler (GW) or Black-capped Vireo (BV)
Distance Distance measure, which is either NA (representing no detection), or the median of the

binned detection distances
PairNumber ID value indicating which observers were paired for that sampling occasion
Observer Observer ID, either primary(1), or secondary (2)
Detected Detection of a bird, either 1 = detected, or 0 = not detected
Date Date of survey since 15 March 2011, numeric value
Pred Predicted occupancy value for that survey hexagon based on Farrell et al. (2013)
Category Region.Label categorization, see R package mrds help file for details on data structure
Effort Amount of survey effort at the point
Day Number of days since 15 March 2011, numeric value
ObjectID Unique ID for each paired observations

72 lfgcwa

Details

In addition to detailing the analysis used by Collier et al. (2013, In Review), this example docu-
ments the use of mrds for avian point count surveys and shows how density models can be incor-
porated with occupancy models to develop spatially explicit density surface maps. For those that
are interested, for the distance sampling portion of our analysis, we used both conventional distance
sampling (cds) and multiple covariate distance sampling (mcds) with uniform and half-normal key
functions. For the mark-recapture portion of our analysis, we tended to use covariates for distance
(median bin width), observer, and date of survey (days since 15 March 2011).

We combined our mrds density estimates via a Horvitz-Thompson styled estimator with the re-
source selection function gradient developed in Farrell et al. (2013) and estimated density on an
~3.14ha hexagonal grid across our study area, which provided a density gradient for Fort Hood.
Because there was considerable data manipulation needed for each analysis to structure the data
appropriately for use in mrds, rather than wrap each analysis in a single function, we have provided
both the Golden-cheeked warbler and Black-capped vireo analyses in their full detail. The primary
differences you will see will be changes to model structures and model outputs between the two
species.

Author(s)

Bret Collier and Jeff Laake

References

Farrell, S.F., B.A. Collier, K.L. Skow, A.M. Long, A.J. Campomizzi, M.L. Morrison, B. Hays, and
R.N. Wilkins. 2013. Using LiDAR-derived structural vegetation characteristics to develop high-
resolution, small-scale, species distribution models for conservation planning. Ecosphere 43(3):
42. http://dx.doi.org/10.1890/ES12-000352.1

Laake, J.L., B.A. Collier, M.L. Morrison, and R.N. Wilkins. 2011. Point-based mark recapture
distance sampling. Journal of Agricultural, Biological and Environmental Statistics 16: 389-408.

Collier, B.A., S.L. Farrell, K.L. Skow, A.M. Long, A.J. Campomizzi, K.B. Hays, J.L. Laake, M.L.
Morrison, and R.N. Wilkins. 2013. Spatially explicit density of endangered avian species in a
disturbed landscape. Auk, In Review.

Examples

Not run:
data(lfgcwa)
xy <- cut(lfgcwa$Pred, c(-0.0001, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1),
labels=c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10"))
x <- data.frame(lfgcwa, New=xy)

Note that I scaled the individual covariate of day-helps with
convergence issues
bird.data <- data.frame(object=x$ObjectID, observer=x$Observer,

detected=x$Detected, distance=x$Distance,
Region.Label=x$New, Sample.Label=x$PointID,
Day=(x$Day/max(x$Day)))

make observer a factor variable

lfgcwa 73

bird.data$observer=factor(bird.data$observer)

Jeff Laake suggested this snippet to quickly create distance medians
which adds bin information to the \code{bird.data} dataframe

bird.data$distbegin=0
bird.data$distend=100
bird.data$distend[bird.data$distance==12.5]=50
bird.data$distbegin[bird.data$distance==37.5]=0
bird.data$distend[bird.data$distance==37.5]=50
bird.data$distbegin[bird.data$distance==62.5]=50
bird.data$distend[bird.data$distance==62.5]=100
bird.data$distbegin[bird.data$distance==87.5]=50
bird.data$distend[bird.data$distance==87.5]=100

Removed all survey points with distance=NA for a survey event;
hence no observations for use in \code{ddf()} but needed later
bird.data=bird.data[complete.cases(bird.data),]

Manipulations on full dataset for various data.frame creation
for use in density estimation using \code{dht()}

Samples dataframe
xx <- x
x <- data.frame(PointID=x$PointID, Species=x$Species,

Category=x$New, Effort=x$Effort)
x <- x[!duplicated(x$PointID),]
point.num <- table(x$Category)
samples <- data.frame(PointID=x$PointID, Region.Label=x$Category,

Effort=x$Effort)
final.samples=data.frame(Sample.Label=samples$PointID,

Region.Label=samples$Region.Label,
Effort=samples$Effort)

obs dataframe
obs <- data.frame(ObjectID=xx$ObjectID, PointID=xx$PointID)
used to get Region and Sample assigned to ObjectID
obs <- merge(obs, samples, by=c("PointID", "PointID"))
obs <- obs[!duplicated(obs$ObjectID),]
obs <- data.frame(object=obs$ObjectID, Region.Label=obs$Region.Label,

Sample.Label=obs$PointID)

#Region.Label dataframe
region.data <- data.frame(Region.Label=c(1,2,3,4,5,6,7,8,9),

Area=c(point.num[1]*3.14,
point.num[2]*3.14,
point.num[3]*3.14,
point.num[4]*3.14,
point.num[5]*3.14,
point.num[6]*3.14,
point.num[7]*3.14,
point.num[8]*3.14,
point.num[9]*3.14))

74 lfgcwa

Candidate Models

GW1=ddf(
dsmodel=~cds(key="unif", adj.series="cos", adj.order=1,adj.scale="width"),
mrmodel=~glm(~distance),
data=bird.data,
method="io",
meta.data=list(binned=TRUE,point=TRUE,width=100,breaks=c(0,50,100)))

GW2=ddf(
dsmodel=~cds(key="unif", adj.series="cos", adj.order=1,adj.scale="width"),
mrmodel=~glm(~distance+observer),
data=bird.data,
method="io",
meta.data=list(binned=TRUE,point=TRUE,width=100,breaks=c(0,50,100)))

GW3=ddf(
dsmodel=~cds(key="unif", adj.series="cos", adj.order=1,adj.scale="width"),
mrmodel=~glm(~distance*observer),
data=bird.data,
method="io",
meta.data=list(binned=TRUE,point=TRUE,width=100,breaks=c(0,50,100)))

GW4=ddf(
dsmodel=~mcds(key="hn",formula=~1),
mrmodel=~glm(~distance),
data=bird.data,
method="io",
meta.data=list(binned=TRUE,point=TRUE,width=100,breaks=c(0,50,100)))

GW4FI=ddf(
dsmodel=~mcds(key="hn",formula=~1),
mrmodel=~glm(~distance),
data=bird.data,
method="io.fi",
meta.data=list(binned=TRUE,point=TRUE,width=100,breaks=c(0,50,100)))

GW5=ddf(
dsmodel=~mcds(key="hn",formula=~1),
mrmodel=~glm(~distance+observer),
data=bird.data,
method="io",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

GW5FI=ddf(
dsmodel=~mcds(key="hn",formula=~1),
mrmodel=~glm(~distance+observer),
data=bird.data,
method="io.fi",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

GW6=ddf(
dsmodel=~mcds(key="hn",formula=~1),
mrmodel=~glm(~distance*observer),
data=bird.data,
method="io",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

GW6FI=ddf(
dsmodel=~mcds(key="hn",formula=~1),

lfgcwa 75

mrmodel=~glm(~distance*observer),
data=bird.data,
method="io.fi",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

GW7=ddf(
dsmodel=~cds(key="hn",formula=~1),
mrmodel=~glm(~distance*Day),
data=bird.data,
method="io",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

GW7FI=ddf(
dsmodel=~cds(key="hn",formula=~1),
mrmodel=~glm(~distance*Day),
data=bird.data,
method="io.fi",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

GW8=ddf(
dsmodel=~mcds(key="hn",formula=~1),
mrmodel=~glm(~distance*observer*Day),
data=bird.data,
method="io",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

GW8FI=ddf(
dsmodel=~mcds(key="hn",formula=~1),
mrmodel=~glm(~distance*observer*Day),
data=bird.data,
method="io.fi",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

#GWDS=ddf(
dsmodel=~mcds(key="hn",formula=~1),
data=bird.data,
method="ds",
meta.data=list(binned=TRUE, point=TRUE, width=100,breaks=c(0,50,100)))

GCWA Summary Metrics

#AIC table building code, not exactly elegant, but I did not
want to add more package dependencies
AIC = c(GW1$criterion, GW2$criterion, GW3$criterion, GW4$criterion,

GW4FI$criterion, GW5$criterion, GW5FI$criterion,
GW6$criterion, GW6FI$criterion, GW7$criterion, GW7FI$criterion,
GW8$criterion, GW8FI$criterion)

#creates a set of row names for me to check my grep() call below
rn <- c("GW1", "GW2", "GW3", "GW4", "GW4FI", "GW5", "GW5FI", "GW6",

"GW6FI", "GW7","GW7FI", "GW8", "GW8FI")

number of parameters for each model
k <- c(length(GW1$par), length(GW2$par), length(GW3$par), length(GW4$par),

length(GW4FI$par), length(GW5$par), length(GW5FI$par),
length(GW6$par), length(GW6FI$par), length(GW7$par),

76 lfgcwa

length(GW7FI$par), length(GW8$par), length(GW8FI$par))

build AIC table and
AIC.table <- data.frame(AIC = AIC, rn=rn, k=k, dAIC = abs(min(AIC)-AIC),

likg = exp(-.5*(abs(min(AIC)-AIC))))
row.names(AIC.table)=grep("GW", ls(), value=TRUE)
AIC.table <- AIC.table[with(AIC.table, order(-likg, -dAIC, AIC, k)),]
AIC.table <- data.frame(AIC.table, wi=AIC.table$likg/sum(AIC.table$likg))
AIC.table

Model average N_hat_covered estimates
not very clean, but I wanted to show full process, need to use
collect.models and model.table here

estimate <- c(GW1$Nhat, GW2$Nhat, GW3$Nhat, GW4$Nhat, GW4FI$Nhat,
GW5$Nhat, GW5FI$Nhat, GW6$Nhat, GW6FI$Nhat, GW7$Nhat,
GW7FI$Nhat, GW8$Nhat, GW8FI$Nhat)

AIC.values <- AIC

Nhat.se is calculated in mrds:::summary.io, not in ddf(), so
it takes a bit to pull out
std.err <- c(summary(GW1)$Nhat.se, summary(GW2)$Nhat.se,

summary(GW3)$Nhat.se,summary(GW4)$Nhat.se,
summary(GW4FI)$Nhat.se, summary(GW5)$Nhat.se,
summary(GW5FI)$Nhat.se, summary(GW6)$Nhat.se,
summary(GW6FI)$Nhat.se, summary(GW7)$Nhat.se,
summary(GW7FI)$Nhat.se,summary(GW8)$Nhat.se,
summary(GW8FI)$Nhat.se)

End(Not run)
Not run:
#Not Run
#requires RMark
library(RMark)
#uses model.average structure to model average real abundance estimates for
#covered area of the surveys
mmi.list=list(estimate=estimate, AIC=AIC.values, se=std.err)
model.average(mmi.list, revised=TRUE)

#Not Run
#Best Model FI
#best.modelFI=AIC.table[1,]
#best.model
#Best Model PI
#best.modelPI=AIC.table[2,]
#best.modelPI

#Not Run
#summary(GW7FI, se=TRUE)
#summary(GW7, se=TRUE)

#Not Run
#GOF for models

lfgcwa 77

#ddf.gof(GW7, breaks=c(0,50,100))

#Not Run
#Density estimation across occupancy categories
#out.GW=dht(GW7, region.data, final.samples, obs, se=TRUE,

options=list(convert.units=.01))

#Plots--Not Run
#Composite Detection Function examples
#plot(GW7, which=3, showpoints=FALSE, angle=0, density=0,
col="black", lwd=3, main="Golden-cheeked Warbler",
xlab="Distance (m)", las=1, cex.axis=1.25, cex.lab=1.25)

#Conditional Detection Function
#dd=expand.grid(distance=0:100,Day=(4:82)/82)
#dmat=model.matrix(~distance*Day,dd)
#dd$p=plogis(model.matrix(~distance*Day,dd)%*%coef(GW7$mr)$estimate)
#dd$Day=dd$Day*82
#with(dd[dd$Day==12,],plot(distance,p,ylim=c(0,1), las=1,
ylab="Detection probability", xlab="Distance (m)",
type="l",lty=1, lwd=3, bty="l", cex.axis=1.5, cex.lab=1.5))
#with(dd[dd$Day==65,],lines(distance,p,lty=2, lwd=3))
#ch=paste(bird.data$detected[bird.data$observer==1],
bird.data$detected[bird.data$observer==2],
sep="")
#tab=table(ch,cut(82*bird.data$Day[bird.data$observer==1],c(0,45,83)),
cut(bird.data$distance[bird.data$observer==1],c(0,50,100)))
#tabmat=cbind(colMeans(rbind(tab[3,,1]/colSums(tab[2:3,,1],
tab[3,,1]/colSums(tab[c(1,3),,1])))),
colMeans(rbind(tab[3,,2]/colSums(tab[2:3,,2],
tab[3,,2]/colSums(tab[c(1,3),,2])))))
#colnames(tabmat)=c("0-50","51-100")
#points(c(25,75),tabmat[1,],pch=1, cex=1.5)
#points(c(25,75),tabmat[2,],pch=2, cex=1.5)

Another alternative plot using barplot instead of points
(this is one in paper)

#ch=paste(bird.data$detected[bird.data$observer==1],
bird.data$detected[bird.data$observer==2],
#sep="")
#tab=table(ch,cut(82*bird.data$Day[bird.data$observer==1],c(0,45,83)),
cut(bird.data$distance[bird.data$observer==1],c(0,50,100)))
#tabmat=cbind(colMeans(rbind(tab[3,,1]/colSums(tab[2:3,,1],
tab[3,,1]/colSums(tab[c(1,3),,1])))),
#colMeans(rbind(tab[3,,2]/colSums(tab[2:3,,2],
tab[3,,2]/colSums(tab[c(1,3),,2])))))
#colnames(tabmat)=c("0-50","51-100")
#par(mfrow=c(2, 1), mai=c(1,1,1,1))
#with(dd[dd$Day==12,],
plot(distance,p,ylim=c(0,1), las=1,
ylab="Detection probability", xlab="",
type="l",lty=1, lwd=4, bty="l", cex.axis=1.5, cex.lab=1.5))

78 logisticbyx

#segments(0, 0, .0, tabmat[1,1], lwd=3)
#segments(0, tabmat[1,1], 50, tabmat[1,1], lwd=4)
#segments(50, tabmat[1,1], 50, 0, lwd=4)
#segments(50, tabmat[1,2], 100, tabmat[1,2], lwd=4)
#segments(0, tabmat[1,1], 50, tabmat[1,1], lwd=4)
#segments(100, tabmat[1,2], 100, 0, lwd=4)
#mtext("a",line=-1, at=90)
#with(dd[dd$Day==65,],
plot(distance,p,ylim=c(0,1), las=1, ylab="Detection probability",
xlab="Distance", type="l",lty=1,
lwd=4, bty="l", cex.axis=1.5, cex.lab=1.5))
#segments(0, 0, .0, tabmat[2,1], lwd=4)
#segments(0, tabmat[2,1], 50, tabmat[2,1], lwd=4)
#segments(50, tabmat[2,1], 50, 0, lwd=4)
#segments(50, tabmat[2,2], 50, tabmat[2,1], lwd=4)
#segments(50, tabmat[2,2], 100, tabmat[2,2], lwd=4)
#segments(100, tabmat[2,2], 100, 0, lwd=4)
#mtext("b",line=-1, at=90)

End(Not run)

logisticbyx Logistic as a function of covariates

Description

treats logistic as a function of covariates; for a given covariate combination it computes function at
with those covariate values at a range of distances

Usage

logisticbyx(distance, x, models, beta, point)

Arguments

distance vector of distance values
x covariate data
models model list
beta logistic parameters
point TRUE if a point transect model

Value

vector of probabilities

Author(s)

Jeff Laake

logisticbyz 79

logisticbyz Logistic as a function of distance

Description

Treats logistic as a function of distance; for a given distance it computes function at all covariate
values in data.

Usage

logisticbyz(x, distance, models, beta)

Arguments

x covariate data
distance single distance value
models model list
beta logistic parameters

Value

vector of probabilities

Author(s)

Jeff Laake

logisticdetfct Logistic detection function

Description

Logistic detection function

Usage

logisticdetfct(distance, theta, w, std = FALSE)

Arguments

distance perpendicular distance vector
theta scale parameters
w scale covariate matrix
std if TRUE uses scale=1

The routine returns a vector of probabilities that the observation were detected
given they were at the specified distance and assuming that g(0)=1 (ie a standard
line transect detection function).

80 logisticdupbyx_fast

logisticdupbyx Logistic for duplicates as a function of covariates

Description

Treats logistic for duplicates as a function of covariate z; for a given z it computes the function at
with those covariate values at a range of distances.

Usage

logisticdupbyx(distance, x1, x2, models, beta, point)

Arguments

distance vector of distance values

x1 covariate data for fct 1

x2 covariate data for fct 2

models model list

beta logistic parameters

point TRUE for point transect data

Value

vector of probabilities

Author(s)

Jeff Laake

logisticdupbyx_fast Logistic for duplicates as a function of covariates (fast)

Description

As logisticdupbyx, but faster when distance is a covariate (but no interactions with distance occur.

Usage

logisticdupbyx_fast(distance, x1, x2, models, beta, point, beta_distance)

logit 81

Arguments

distance vector of distance values

x1 linear predictor for 1, without distance

x2 linear predictor for 2, without distance

models model list

beta logistic parameters

point TRUE for point transect data

beta_distance parameter for distance

Author(s)

David L Miller

logit Logit function

Description

Computes logit transformation.

Usage

logit(p)

Arguments

p probability

Value

logit(p) returns [log(p/(1-p)]

Author(s)

Jeff Laake

82 mcds

logLik.ddf log-likelihood value for a fitted detection function

Description

Extract the log-likelihood from a fitted detection function.

Usage

S3 method for class 'ddf'
logLik(object, ...)

Arguments

object a fitted detection function model object

... included for S3 completeness, but ignored

Value

a numeric value giving the log-likelihood with two attributes: "df" the "degrees of freedom" for
the model (number of parameters) and "nobs" the number of observations used to fit the model

Author(s)

David L Miller

mcds MCDS function definition

Description

Creates model formula list for multiple covariate distance sampling using values supplied in call to
ddf

Usage

mcds(
formula = NULL,
key = NULL,
adj.series = NULL,
adj.order = c(NULL),
adj.scale = "width",
adj.exp = FALSE,
shape.formula = ~1

)

MCDS.exe 83

Arguments

formula formula for scale function

key string identifying key function (currently either "hn" (half-normal),"hr" (hazard-
rate), "unif" (uniform) or "gamma" (gamma distribution)

adj.series string identifying adjustment functions cos (Cosine), herm (Hermite polynomi-
als), poly (simple polynomials) or NULL

adj.order vector of order of adjustment terms to include

adj.scale whether to scale the adjustment terms by "width" or "scale"

adj.exp if TRUE uses exp(adj) for adjustment to keep f(x)>0

shape.formula formula for shape function

Value

A formula list used to define the detection function model

fct string "mcds"

key key function string

adj.series adjustment function string

adj.order adjustment function orders

adj.scale adjustment function scale type

formula formula for scale function

shape.formula formula for shape function

Author(s)

Jeff Laake; Dave Miller

MCDS.exe Run MCDS.exe as a backend for mrds

Description

Rather than use the R code provided in ‘mrds‘, one can also use the binary of ‘MCDS.exe‘, to
reproduce the results given by Distance for Windows. There is no guarantee that one approach
is "better" than the other, but ‘mrds‘ will select the model with the better likelihood and provide
answers to this. By default (once ‘MCDS.exe‘ is available) both ‘MCDS.exe‘ and R will be used
to obtain detection function parameter estimates. To select only to use the ‘MCDS.exe‘ optimizer set
control=list(optimizer='MCDS') or only use the R optimizer set control=list(optimizer='R').

Details

Please see our examples pages for further information: https://examples.distancesampling.org/

If you are running a non-Windows operating system, you can follow the instructions below to have
‘MCDS.exe‘ run using ‘wine‘.

84 mrds_opt

Obtaining MCDS.exe

The following code can be used to download ‘MCDS.exe‘ from the distance sampling website:
download.file("http://distancesampling.org/R/MCDS.exe", paste0(system.file(package="mrds"),"/MCDS.exe"),
mode = "wb") The MCDS binary will be installed to the main directory of your your local R mrds
library. Alternatively, you can copy the ‘MCDS.exe‘ from your local Distance for Windows instal-
lation if you prefer. The location of your local mrds library main directory can be found by running
the following in R: system.file("MCDS.exe", package="mrds").

Running MCDS.exe on non-Windows platforms

This has been tentatively tested on a mac but should currently be considered largely experimental.

One can still use MCDS.exe even if you are running a mac computer. To do this one will need to
install ‘wine‘ a Windows emulator. It is important to use a version of ‘wine‘ which can run 32-bit
programs.

The package will attempt to work out which ‘wine‘ binary to use (and detect if it is installed), but this
doesn’t always work. In this case, the location of the ‘wine‘ binary can be specified in the ‘control‘
‘list‘ provided to ‘ddf‘ using the ‘winebin‘ element or supply the ‘winebin‘ argument to the ‘ds‘
function. For example, if ‘wine‘ is installed at ‘/usr/bin/local/wine‘ you can set ‘control$winebin‘
to that location to use that binary.

On macOS, this can be achieved using the ‘homebrew‘ package management system and installing
the ‘wine-crossover‘ package. You may need to change the control$winebin to be ‘wine‘, ‘wine64‘
or ‘wine32on64‘, depending on your system’s setup. This package tries to work out what to do, but
likely doesn’t handle all corner cases. Currently this is untested on Mac M1 systems.

Stopping using MCDS.exe

Once this feature is enabled (see below) using ‘ddf‘ will always run both its built-in R optimizer
and ‘MCDS.exe‘. To disable this behaviour remove the ‘MCDS.exe‘ binary file. You can find it by
running the following in R: system.file("MCDS.exe", package="mrds").

Author(s)

David L Miller and Jonah McArthur

mrds_opt Tips on optimisation issues in mrds models

Description

Occasionally when fitting an ‘mrds‘ model one can run into optimisation issues. In general such
problems can be quite complex so these "quick fixes" may not work. If you come up against
problems that are not fixed by these tips, or you feel the results are dubious please go ahead and
contact the package authors.

mrds_opt 85

Debug mode

One can obtain debug output at each stage of the optimisation using the showit option. This is set
via control, so adding control=list(showit=3) gives the highest level of debug output (setting
showit to 1 or 2 gives less output).

Re-scaling covariates

Sometimes convergence issues in covariate (MCDS) models are caused by values of the covariate
being very large, so a rescaling of that covariate is then necessary. Simply scaling by the standard
deviation of the covariate can help (e.g. dat$size.scaled <- dat$scale/sd(dat$scale) for a
covariate size, then including size.scaled in the model instead of size).

It is important to note that one needs to use the original covariate (size) when computing Horvitz-
Thompson estimates of population size if the group size is used in that estimate. i.e. use the unscaled
size in the numerator of the H-T estimator.

Factor levels

By default R will set the base factor level to be the label which comes first alphabetically. Some-
times this can be an issue when that factor level corresponds to a subset of the data with very few
observations. This can lead to very large uncertainty estimates (CVs) for model parameters. One
way around this is to use relevel to set the base level to a level with more observations.

Initial values

Initial (or starting) values for the dsmodel can be set via the initial element of the control
list. initial is a list itself with elements scale, shape and adjustment, corresponding to the
associated parameters. If a model has covariates then the scale or shape elements will be vectors
with parameter initial values in the same order as they are specific in the model formula (using
showit is a good check they are in the correct order). Adjustment starting values are in order of the
order of that term (cosine order 2 is before cosine order 3 terms).

One way of obtaining starting values is to fit a simpler model first (say with fewer covariates or
adjustments) and then use the starting values from this simpler model for the corresponding param-
eters.

Another alternative to obtain starting values is to fit the model (or some submodel) using Distance
for Windows. Note that Distance reports the scale parameter (or intercept in a covariate model) on
the exponential scale, so one must log this before supplying it to ddf.

Bounds

One can change the upper and lower bounds for the dsmodel parameters. These specify the largest
and smallest values individual parameters can be. By placing these constraints on the parameters, it
is possible to "temper" the optimisation problem, making fitting possible.

Again, one uses the control list, the elements upperbounds and lowerbounds. In this case, each
of upperbounds and lowerbounds are vectors, which one can think of as each of the vectors shape,
scale and adjustment from the "Initial values" section above, concatenated in that order. If one
does not occur (e.g. no shape parameter) then it is simple omitted from the vector.

86 nlminb_wrapper

Author(s)

David L. Miller <dave@ninepointeightone.net>

NCovered Compute estimated abundance in covered (sampled) region

Description

Generic function that computes abundance within the covered region. It calls method (class) specific
functions for the computation.

Usage

NCovered(par, model = NULL, group = TRUE)

Arguments

par parameter values (used when computing derivatives wrt parameter uncertainty);
if NULL parameter values in model are used

model ddf model object

group if TRUE computes group abundance and if FALSE individual abundance

Value

abundance estimate

Author(s)

Jeff Laake

nlminb_wrapper Wrapper around nlminb

Description

This is a wrapper around nlminb to use scaling, as this is not available in optimx.

p.det 87

Usage

nlminb_wrapper(
par,
ll,
ugr = NULL,
lower = NULL,
upper = NULL,
mcontrol,
hess = NULL,
ddfobj,
data,
...

)

Arguments

par starting parameters

ll log likelihood function

ugr gradient function

lower lower bounds on parameters

upper upper bounds on parameters

mcontrol control options

hess hessian function

ddfobj detection function specification object

data the data

... anything else to pass to ll

Value

optimx object

Author(s)

David L Miller, modified from optimx.run by JC Nash, R Varadhan, G Grothendieck.

p.det Double-platform detection probability

Description

Computes detection probability for detection function computed from mark-recapture data with
possibly different link functions.

88 p.dist.table

Usage

p.det(dpformula, dplink, dppars, dpdata)

Arguments

dpformula formula for detection function

dplink link function ("logit","loglog","cloglog")

dppars parameter vector

dpdata double platform data

Value

vector of predicted detection probabilities

Author(s)

?????

p.dist.table Distribution of probabilities of detection

Description

Generate a table of frequencies of probability of detection from a detection function model. This
is particularly useful when employing covariates, as it can indicate if there are detections with very
small detection probabilities that can be unduly influential when calculating abundance estimates.

Usage

p.dist.table(object, bins = seq(0, 1, by = 0.1), proportion = FALSE)

p_dist_table(object, bins = seq(0, 1, by = 0.1), proportion = FALSE)

Arguments

object fitted detection function

bins how the results should be binned

proportion should proportions be returned as well as counts?

Details

Because dht uses a Horvitz-Thompson-like estimator, abundance estimates can be sensitive to er-
rors in the estimated probabilities. The estimator is based on

∑
1/P̂a(zi), which means that the

sensitivity is greater for smaller detection probabilities. As a rough guide, we recommend that the
method be not used if more than say 5% of the P̂a(zi) are less than 0.2, or if any are less than 0.1.
If these conditions are violated, the truncation distance w can be reduced. This causes some loss of
precision relative to standard distance sampling without covariates.

parse.optimx 89

Value

a data.frame with probability bins, counts and (optionally) proportions. The object has an attribute
p_range which contains the range of estimated detection probabilities

Author(s)

David L Miller

References

Marques, F.F.C. and S.T. Buckland. 2004. Covariate models for the detection function. In: Ad-
vanced Distance Sampling, eds. S.T. Buckland, D.R. Anderson, K.P. Burnham, J.L. Laake, D.L.
Borchers, and L. Thomas. Oxford University Press.

Examples

Not run:
try out the tee data
data(book.tee.data)
egdata <- book.tee.data$book.tee.dataframe
fit model with covariates
result <- ddf(dsmodel = ~mcds(key = "hn", formula = ~sex+size),

data = egdata[egdata$observer==1,], method = "ds",
meta.data = list(width = 4))

print table
p.dist.table(result)
with proportions
p.dist.table(result, proportion=TRUE)

End(Not run)

parse.optimx Parse optimx results and present a nice object

Description

Take the resulting object from a call to optimx and make it into an object that mrds wants to talk to.

Usage

parse.optimx(lt, lnl.last, par.last)

Arguments

lt an optimx object

lnl.last last value of the log likelihood

par.last last value of the parameters

90 pdot.dsr.integrate.logistic

Value

lt object that can be used later on

pdot.dsr.integrate.logistic

Compute probability that a object was detected by at least one ob-
server

Description

Computes probability that a object was detected by at least one observer (pdot or p_.) for a logistic
detection function that contains distance.

Usage

pdot.dsr.integrate.logistic(
right,
width,
beta,
x,
integral.numeric,
BT,
models,
GAM = FALSE,
rem = FALSE,
point = FALSE

)

Arguments

right either an integration range for binned data (vector of 2) or the rightmost value
for integration (from 0 to right)

width transect width

beta parameters of logistic detection function

x data matrix
integral.numeric

set to TRUE unless data are binned (done in this fct) or the model is such that dis-
tance is not linear (eg distance^2), If integral.numeric is FALSE it will compute
the integral analytically. It should only be FALSE if is.linear.logistic function is
TRUE.

BT FALSE except for the trial configuration; BT stands for Buckland-Turnock who
initially proposed a trial configuration for dual observers

models list of models including g0model

GAM Not used at present. The idea was to be able to use a GAM for g(0) portion of
detection function; should always be F

plot.det.tables 91

rem only TRUE for the removal configuration but not used and could be removed if
pulled from the function calls. Originally thought the pdot integral would differ
but it is the same as the io formula. The only thing that differs with removal is
that p(2|1)=1. Observer 2 sees everything seen by observer 1,

point TRUE for point transects

Author(s)

Jeff Laake

plot.det.tables Observation detection tables

Description

Plot the tables created by det.tables. Produces a series of tables for dual observer data that shows
the number missed and detected for each observer within defined distance classes.

Usage

S3 method for class 'det.tables'
plot(
x,
which = 1:6,
angle = NULL,
density = NULL,
col1 = "white",
col2 = "lightgrey",
new = TRUE,
...

)

Arguments

x object returned by det.tables

which items in x to plot (vector with values in 1:6)

angle shading angle for hatching

density shading density for hatching

col1 plotting colour for total histogram bars.

col2 plotting colour for subset histogram bars.

new if TRUE new plotting window for each plot

... other graphical parameters, passed to plotting functions

92 plot.ds

Details

Plots that are produced are as follows (controlled by the which argument):

1 Detected by either observer/Detected by observer 1

2 Detected by either observer/Detected by observer 2

3 Seen by both observers

4 Seen by either observer

5 Detected by observer 2/Detected by observer 1 | 2

6 Detected by observer 1/Detected by observer 2 | 1

Value

Just plots.

Author(s)

Jeff Laake, David L Miller

Examples

data(book.tee.data)
region <- book.tee.data$book.tee.region
egdata <- book.tee.data$book.tee.dataframe
samples <- book.tee.data$book.tee.samples
obs <- book.tee.data$book.tee.obs
xx <- ddf(mrmodel=~glm(formula=~distance*observer),

dsmodel = ~mcds(key = "hn", formula = ~sex),
data = egdata, method = "io", meta.data = list(width = 4))

tabs <- det.tables(xx,breaks=c(0,.5,1,2,3,4))
par(mfrow=c(2,3))
plot(tabs,which=1:6,new=FALSE)

plot.ds Plot fit of detection functions and histograms of data from distance
sampling model

Description

Plots the fitted detection function(s) with a histogram of the observed distances to compare visually
the fitted model and data.

plot.ds 93

Usage

S3 method for class 'ds'
plot(
x,
which = 2,
breaks = NULL,
nc = NULL,
jitter.v = rep(0, 3),
showpoints = TRUE,
subset = NULL,
pl.col = "lightgrey",
pl.den = NULL,
pl.ang = NULL,
main = NULL,
pages = 0,
pdf = FALSE,
ylim = NULL,
xlab = "Distance",
ylab = NULL,
...

)

Arguments

x fitted model from ddf.

which index to specify which plots should be produced:

1 histogram of observed distances
2 histogram of observed distances with fitted line and points (default)

breaks user defined breakpoints

nc number of equal width bins for histogram

jitter.v apply jitter to points by multiplying the fitted value by a random draw from a
normal distribution with mean 1 and sd jitter.v.

showpoints logical variable; if TRUE plots predicted value for each observation (conditional
on its observed distance).

subset subset of data to plot.

pl.col colour for histogram bars.

pl.den shading density for histogram bars.

pl.ang shading angle for histogram bars.

main plot title.

pages the number of pages over which to spread the plots. For example, if pages=1
then all plots will be displayed on one page. Default is 0, which prompts the
user for the next plot to be displayed.

94 plot.ds

pdf plot the histogram of distances with the PDF of the probability of detection
overlaid. Ignored (with warning) for line transect models.

ylim vertical axis limits.

xlab horizontal axis label (defaults to "Distance").

ylab vertical axis label (default automatically set depending on plot type).

... other graphical parameters, passed to the plotting functions (plot, hist, lines,
points, etc).

Details

The structure of the histogram can be controlled by the user-defined arguments nc or breaks. The
observation specific detection probabilities along with the line representing the fitted average detec-
tion probability.

It is not intended for the user to call plot.ds but its arguments are documented here. Instead the
generic plot command should be used and it will call the appropriate function based on the class
of the ddf object.

Value

Just plots.

Author(s)

Jeff Laake, Jon Bishop, David Borchers, David L Miller

See Also

add_df_covar_line

Examples

fit a model to the tee data
data(book.tee.data)
egdata <- book.tee.data$book.tee.dataframe
xx <- ddf(dsmodel=~mcds(key="hn", formula=~sex),

data=egdata[egdata$observer==1,],
method="ds", meta.data=list(width=4))

not showing predicted probabilities
plot(xx, breaks=c(0, 0.5, 1, 2, 3, 4), showpoints=FALSE)

two subsets
plot(xx, breaks=c(0, 0.5, 1, 2, 3, 4), subset=sex==0)
plot(xx, breaks=c(0, 0.5, 1, 2, 3, 4), subset=sex==1)

put both plots on one page
plot(xx, breaks=c(0, 0.5, 1, 2, 3, 4), pages=1, which=1:2)

plot.io 95

plot.io Plot fit of detection functions and histograms of data from distance
sampling independent observer (io) model

Description

Plots the fitted detection functions for a distance sampling model and histograms of the distances
(for unconditional detection functions) or proportion of observations detected within distance inter-
vals (for conditional detection functions) to compare visually the fitted model and data.

Usage

S3 method for class 'io'
plot(
x,
which = 1:6,
breaks = NULL,
nc = NULL,
maintitle = "",
showlines = TRUE,
showpoints = TRUE,
ylim = c(0, 1),
angle = NULL,
density = NULL,
col = "lightgrey",
jitter = NULL,
divisions = 25,
pages = 0,
xlab = "Distance",
ylab = "Detection probability",
subtitle = TRUE,
...

)

Arguments

x fitted model from ddf

which index to specify which plots should be produced.

1 Plot primary unconditional detection function
2 Plot secondary unconditional detection function
3 Plot pooled unconditional detection function
4 Plot duplicate unconditional detection function
5 Plot primary conditional detection function
6 Plot secondary conditional detection function

Note that the order of which is ignored and plots are produced in the above order.

96 plot.io

breaks user define breakpoints

nc number of equal-width bins for histogram

maintitle main title line for each plot

showlines logical variable; if TRUE a line representing the average detection probability is
plotted

showpoints logical variable; if TRUE plots predicted value for each observation

ylim range of vertical axis; defaults to (0,1)

angle shading angle for histogram bars.

density shading density for histogram bars.

col colour for histogram bars.

jitter scaling option for plotting points. Jitter is applied to points by multiplying the
fitted value by a random draw from a normal distribution with mean 1 and sd
jitter.

divisions number of divisions for averaging line values; default = 25

pages the number of pages over which to spread the plots. For example, if pages=1
then all plots will be displayed on one page. Default is 0, which prompts the
user for the next plot to be displayed.

xlab label for x-axis

ylab label for y-axis

subtitle if TRUE, shows plot type as sub-title

... other graphical parameters, passed to the plotting functions (plot, hist, lines,
points, etc)

Details

The structure of the histogram can be controlled by the user-defined arguments nc or breaks. The
observation specific detection probabilities along with the line representing the fitted average detec-
tion probability.

It is not intended for the user to call plot.io.fi but its arguments are documented here. Instead
the generic plot command should be used and it will call the appropriate function based on the
class of the ddf object.

Value

Just plots

Author(s)

Jeff Laake, Jon Bishop, David Borchers, David L Miller

plot.io.fi 97

Examples

library(mrds)
data(book.tee.data)
egdata <- book.tee.data$book.tee.dataframe
result.io <- ddf(dsmodel=~cds(key = "hn"), mrmodel=~glm(~distance),

data=egdata, method="io", meta.data=list(width=4))

just plot everything
plot(result.io)

Plot primary and secondary unconditional detection functions on one page
and primary and secondary conditional detection functions on another
plot(result.io,which=c(1,2,5,6),pages=2)

plot.io.fi Plot fit of detection functions and histograms of data from distance
sampling independent observer model with full independence (io.fi)

Description

Plots the fitted detection functions for a distance sampling model and histograms of the distances
(for unconditional detection functions) or proportion of observations detected within distance inter-
vals (for conditional detection functions) to compare visually the fitted model and data.

Usage

S3 method for class 'io.fi'
plot(
x,
which = 1:6,
breaks = NULL,
nc = NULL,
maintitle = "",
showlines = TRUE,
showpoints = TRUE,
ylim = c(0, 1),
angle = NULL,
density = NULL,
col = "lightgrey",
jitter = NULL,
divisions = 25,
pages = 0,
xlab = "Distance",
ylab = "Detection probability",
subtitle = TRUE,
...

)

98 plot.io.fi

Arguments

x fitted model from ddf

which index to specify which plots should be produced.

1 Plot primary unconditional detection function
2 Plot secondary unconditional detection function
3 Plot pooled unconditional detection function
4 Plot duplicate unconditional detection function
5 Plot primary conditional detection function
6 Plot secondary conditional detection function

Note that the order of which is ignored and plots are produced in the above order.

breaks user define breakpoints

nc number of equal-width bins for histogram

maintitle main title line for each plot

showlines logical variable; if TRUE a line representing the average detection probability is
plotted

showpoints logical variable; if TRUE plots predicted value for each observation

ylim range of vertical axis; defaults to (0,1)

angle shading angle for histogram bars.

density shading density for histogram bars.

col colour for histogram bars.

jitter scaling option for plotting points. Jitter is applied to points by multiplying the
fitted value by a random draw from a normal distribution with mean 1 and sd
jitter.

divisions number of divisions for averaging line values; default = 25

pages the number of pages over which to spread the plots. For example, if pages=1
then all plots will be displayed on one page. Default is 0, which prompts the
user for the next plot to be displayed.

xlab label for x-axis

ylab label for y-axis

subtitle if TRUE, shows plot type as sub-title

... other graphical parameters, passed to the plotting functions (plot, hist, lines,
points, etc)

Details

The structure of the histogram can be controlled by the user-defined arguments nc or breaks. The
observation specific detection probabilities along with the line representing the fitted average detec-
tion probability.

It is not intended for the user to call plot.io.fi but its arguments are documented here. Instead
the generic plot command should be used and it will call the appropriate function based on the
class of the ddf object.

plot.rem 99

Value

Just plots.

Author(s)

Jeff Laake, Jon Bishop, David Borchers, David L Miller

Examples

library(mrds)
data(book.tee.data)
egdata <- book.tee.data$book.tee.dataframe
result.io.fi <- ddf(mrmodel=~glm(~distance), data = egdata, method = "io.fi",

meta.data = list(width = 4))

just plot everything
plot(result.io.fi)

Plot primary and secondary unconditional detection functions on one page
and primary and secondary conditional detection functions on another
plot(result.io.fi,which=c(1,2,5,6),pages=2)

plot.rem Plot fit of detection functions and histograms of data from removal
distance sampling model

Description

Plots the fitted detection functions for a distance sampling model and histograms of the distances
(for unconditional detection functions) or proportion of observations detected within distance inter-
vals (for conditional detection functions) to compare visually the fitted model and data.

Usage

S3 method for class 'rem'
plot(
x,
which = 1:3,
breaks = NULL,
nc = NULL,
maintitle = "",
showlines = TRUE,
showpoints = TRUE,
ylim = c(0, 1),
angle = NULL,
density = NULL,
col = "lightgrey",

100 plot.rem

jitter = NULL,
divisions = 25,
pages = 0,
xlab = "Distance",
ylab = "Detection probability",
subtitle = TRUE,
...

)

Arguments

x fitted model from ddf

which index to specify which plots should be produced.

1 Plot primary unconditional detection function
2 Plot pooled unconditional detection function
3 Plot conditional (1|2) detection function

breaks user define breakpoints

nc number of equal-width bins for histogram

maintitle main title line for each plot

showlines logical variable; if TRUE a line representing the average detection probability is
plotted

showpoints logical variable; if TRUE plots predicted value for each observation

ylim range of vertical axis; defaults to (0,1)

angle shading angle for histogram bars.

density shading density for histogram bars.

col colour for histogram bars.

jitter scaling option for plotting points. Jitter is applied to points by multiplying the
fitted value by a random draw from a normal distribution with mean 1 and sd
jitter.

divisions number of divisions for averaging line values; default = 25

pages the number of pages over which to spread the plots. For example, if pages=1
then all plots will be displayed on one page. Default is 0, which prompts the
user for the next plot to be displayed.

xlab label for x-axis

ylab label for y-axis

subtitle if TRUE, shows plot type as sub-title

... other graphical parameters, passed to the plotting functions (plot, hist, lines,
points, etc)

plot.rem.fi 101

Details

The structure of the histogram can be controlled by the user-defined arguments nc or breaks. The
observation specific detection probabilities along with the line representing the fitted average detec-
tion probability.

It is not intended for the user to call plot.rem but its arguments are documented here. Instead the
generic plot command should be used and it will call the appropriate function based on the class
of the ddf object.

Author(s)

Jeff Laake, Jon Bishop, David Borchers, David L Miller

plot.rem.fi Plot fit of detection functions and histograms of data from removal
distance sampling model

Description

Plots the fitted detection functions for a distance sampling model and histograms of the distances
(for unconditional detection functions) or proportion of observations detected within distance inter-
vals (for conditional detection functions) to compare visually the fitted model and data.

Usage

S3 method for class 'rem.fi'
plot(
x,
which = 1:3,
breaks = NULL,
nc = NULL,
maintitle = "",
showlines = TRUE,
showpoints = TRUE,
ylim = c(0, 1),
angle = NULL,
density = NULL,
col = "lightgrey",
jitter = NULL,
divisions = 25,
pages = 0,
xlab = "Distance",
ylab = "Detection probability",
subtitle = TRUE,
...

)

102 plot.rem.fi

Arguments

x fitted model from ddf

which index to specify which plots should be produced.

1 Plot primary unconditional detection function
2 Plot pooled unconditional detection function
3 Plot conditional (1|2) detection function

breaks user defined breakpoints
nc number of equal-width bins for histogram
maintitle main title line for each plot
showlines logical variable; if TRUE a line representing the average detection probability is

plotted
showpoints logical variable; if TRUE plots predicted value for each observation
ylim range of vertical axis; defaults to (0,1)
angle shading angle for histogram bars.
density shading density for histogram bars.
col colour for histogram bars.
jitter scaling option for plotting points. Jitter is applied to points by multiplying the

fitted value by a random draw from a normal distribution with mean 1 and sd
jitter

divisions number of divisions for averaging line values; default = 25
pages the number of pages over which to spread the plots. For example, if pages=1

then all plots will be displayed on one page. Default is 0, which prompts the
user for the next plot to be displayed.

xlab label for x-axis
ylab label for y-axis
subtitle if TRUE, shows plot type as sub-title
... other graphical parameters, passed to the plotting functions (plot, hist, lines,

points, etc)

Details

The structure of the histogram can be controlled by the user-defined arguments nc or breaks. The
observation specific detection probabilities along with the line representing the fitted average detec-
tion probability.

It is not intended for the user to call plot.rem.fi but its arguments are documented here. Instead
the generic plot command should be used and it will call the appropriate function based on the
class of the ddf object.

Author(s)

Jeff Laake, Jon Bishop, David Borchers, David L Miller

plot.trial 103

plot.trial Plot fit of detection functions and histograms of data from distance
sampling trial observer model

Description

Plots the fitted detection functions for a distance sampling model and histograms of the distances
(for unconditional detection functions) or proportion of observations detected within distance inter-
vals (for conditional detection functions) to compare visually the fitted model and data.

Usage

S3 method for class 'trial'
plot(
x,
which = 1:2,
breaks = NULL,
nc = NULL,
maintitle = "",
showlines = TRUE,
showpoints = TRUE,
ylim = c(0, 1),
angle = NULL,
density = NULL,
col = "lightgrey",
jitter = NULL,
divisions = 25,
pages = 0,
xlab = "Distance",
ylab = "Detection probability",
subtitle = TRUE,
...

)

Arguments

x fitted model from ddf

which index to specify which plots should be produced.

1 Unconditional detection function for observer 1
2 Conditional detection function plot (1|2)

breaks user define breakpoints

nc number of equal-width bins for histogram

maintitle main title line for each plot

104 plot.trial.fi

showlines logical variable; if TRUE a line representing the average detection probability is
plotted

showpoints logical variable; if TRUE plots predicted value for each observation

ylim range of vertical axis; defaults to (0,1)

angle shading angle for histogram bars.

density shading density for histogram bars.

col colour for histogram bars.

jitter scaling option for plotting points. Jitter is applied to points by multiplying the
fitted value by a random draw from a normal distribution with mean 1 and sd
jitter.

divisions number of divisions for averaging line values; default = 25

pages the number of pages over which to spread the plots. For example, if pages=1
then all plots will be displayed on one page. Default is 0, which prompts the
user for the next plot to be displayed.

xlab label for x-axis

ylab label for y-axis

subtitle if TRUE, shows plot type as sub-title

... other graphical parameters, passed to the plotting functions (plot, hist, lines,
points, etc)

Details

The structure of the histogram can be controlled by the user-defined arguments nc or breaks. The
observation specific detection probabilities along with the line representing the fitted average detec-
tion probability.

It is not intended for the user to call plot.io.fi but its arguments are documented here. Instead
the generic plot command should be used and it will call the appropriate function based on the
class of the ddf object.

Author(s)

Jeff Laake, Jon Bishop, David Borchers

plot.trial.fi Plot fit of detection functions and histograms of data from distance
sampling trial observer model

Description

Plots the fitted detection functions for a distance sampling model and histograms of the distances
(for unconditional detection functions) or proportion of observations detected within distance inter-
vals (for conditional detection functions) to compare visually the fitted model and data.

plot.trial.fi 105

Usage

S3 method for class 'trial.fi'
plot(
x,
which = 1:2,
breaks = NULL,
nc = NULL,
maintitle = "",
showlines = TRUE,
showpoints = TRUE,
ylim = c(0, 1),
angle = NULL,
density = NULL,
col = "lightgrey",
jitter = NULL,
divisions = 25,
pages = 0,
xlab = "Distance",
ylab = "Detection probability",
subtitle = TRUE,
...

)

Arguments

x fitted model from ddf

which index to specify which plots should be produced.

1 Unconditional detection function for observer 1
2 Conditional detection function plot (1|2)

breaks user define breakpoints

nc number of equal-width bins for histogram

maintitle main title line for each plot

showlines logical variable; if TRUE a line representing the average detection probability is
plotted

showpoints logical variable; if TRUE plots predicted value for each observation

ylim range of vertical axis; defaults to (0,1)

angle shading angle for histogram bars.

density shading density for histogram bars.

col colour for histogram bars.

jitter scaling option for plotting points. Jitter is applied to points by multiplying the
fitted value by a random draw from a normal distribution with mean 1 and sd
jitter.

106 plot_cond

divisions number of divisions for averaging line values; default = 25

pages the number of pages over which to spread the plots. For example, if pages=1
then all plots will be displayed on one page. Default is 0, which prompts the
user for the next plot to be displayed.

xlab label for x-axis

ylab label for y-axis

subtitle if TRUE, shows plot type as sub-title

... other graphical parameters, passed to the plotting functions (plot, hist, lines,
points, etc)

Details

The structure of the histogram can be controlled by the user-defined arguments nc or breaks. The
observation specific detection probabilities along with the line representing the fitted average detec-
tion probability.

It is not intended for the user to call plot.io.fi but its arguments are documented here. Instead
the generic plot command should be used and it will call the appropriate function based on the
class of the ddf object.

Author(s)

Jeff Laake, Jon Bishop, David Borchers

plot_cond Plot conditional detection function from distance sampling model

Description

Plot proportion of observations detected within distance intervals (for conditional detection func-
tions) to compare visually the fitted model and data. Internal function called by plot methods.

Usage

plot_cond(
obs,
xmat,
gxvalues,
model,
nc,
breaks,
finebr,
showpoints,
showlines,
maintitle,
ylim,

plot_cond 107

angle = -45,
density = 20,
col = "black",
jitter = NULL,
xlab = "Distance",
ylab = "Detection probability",
subtitle = TRUE,
...

)

Arguments

obs observer code

xmat processed data

gxvalues detection function values for each observation

model fitted model from ddf

nc number of equal-width bins for histogram

breaks user define breakpoints

finebr fine break values over which line is averaged

showpoints logical variable; if TRUE plots predicted value for each observation

showlines logical variable; if TRUE plots average predicted value line

maintitle main title line for each plot

ylim range of y axis (default c(0,1))

angle shading angle for hatching

density shading density for hatching

col plotting colour

jitter scaling option for plotting points. Jitter is applied to points by multiplying the
fitted value by a random draw from a normal distribution with mean 1 and sd
jitter.

xlab label for x-axis

ylab label for y-axis

subtitle if TRUE, shows plot type as sub-title

... other graphical parameters, passed to the plotting functions (plot, hist, lines,
points, etc)

Author(s)

Jeff Laake, Jon Bishop, David Borchers

108 plot_uncond

plot_layout Layout for plot methods in mrds

Description

This function does the paging, using devAskNewPage(). This means we can just call plots and R
will make the prompt for us Warning, this function has side effects! It modifies devAskNewPage!

Usage

plot_layout(which, pages)

Arguments

which which plots are to be created

pages number of pages to span the plots across

Details

Code is stolen and modified from plot.R in mgcv by Simon Wood

Author(s)

David L. Miller, based on code by Simon N. Wood

plot_uncond Plot unconditional detection function from distance sampling model

Description

Plots unconditional detection function for observer=obs observations overlays histogram, average
detection function and values for individual observations data. Internal function called by plot
methods.

Usage

plot_uncond(
model,
obs,
xmat,
gxvalues,
nc,
finebr,
breaks,
showpoints,

plot_uncond 109

showlines,
maintitle,
ylim,
return.lines = FALSE,
angle = -45,
density = 20,
col = "black",
jitter = NULL,
xlab = "Distance",
ylab = "Detection probability",
subtitle = TRUE,
...

)

Arguments

model fitted model from ddf

obs value of observer for plot

xmat processed data

gxvalues detection function values for each observation

nc number of equal-width bins for histogram

finebr fine break values over which line is averaged

breaks user define breakpoints

showpoints logical variable; if TRUE plots predicted value for each observation

showlines logical variable; if TRUE plots average predicted value line

maintitle main title line for each plot

ylim range of y axis; defaults to (0,1)

return.lines if TRUE, returns values for line

angle shading angle for hatching

density shading density for hatching

col plotting colour

jitter scaling option for plotting points. Jitter is applied to points by multiplying the
fitted value by a random draw from a normal distribution with mean 1 and sd
jitter.

xlab label for x-axis

ylab label for y-axis

subtitle if TRUE, shows plot type as sub-title

... other graphical parameters, passed to the plotting functions (plot, hist, lines,
points, etc)

Value

if return.lines==TRUE returns dataframe average.line otherwise just plots

110 predict.ds

Author(s)

Jeff Laake, Jon Bishop, David Borchers

predict.ds Predictions from mrds models

Description

Predict detection probabilities (or effective strip widths/effective areas of detection) from a fitted
distance sampling model using either the original data (i.e. "fitted" values) or using new data.

Usage

S3 method for class 'ds'
predict(object, newdata=NULL, compute=FALSE,
int.range=NULL, esw=FALSE, se.fit=FALSE, ...)

S3 method for class 'io.fi'
predict(object, newdata=NULL, compute=FALSE,

int.range=NULL, integrate=FALSE, ...)
S3 method for class 'io'

predict(object, newdata=NULL, compute=FALSE,
int.range=NULL, ...)
S3 method for class 'trial'

predict(object, newdata=NULL, compute=FALSE,
int.range=NULL, ...)
S3 method for class 'trial.fi'

predict(object, newdata=NULL, compute=FALSE,
int.range=NULL, integrate=FALSE, ...)
S3 method for class 'rem'

predict(object, newdata=NULL, compute=FALSE,
int.range=NULL, ...)
S3 method for class 'rem.fi'

predict(object, newdata=NULL, compute=FALSE,
int.range=NULL, integrate=FALSE, ...)

Arguments

object ddf model object.

newdata new data.frame for prediction, this must include a column called "distance".

compute if TRUE compute values and don’t use the fitted values stored in the model object.

int.range integration range for variable range analysis; either vector or 2 column matrix.

esw if TRUE, returns effective strip half-width (or effective area of detection for point
transect models) integral from 0 to the truncation distance (width) of p(y)dy;
otherwise it returns the integral from 0 to truncation width of p(y)π(y) where
π(y) = 1/w for lines and π(y) = 2r/w2 for points.

predict.ds 111

se.fit for *.ds models only, generate standard errors on the predicted probabilities of
detection (or ESW if esw=TRUE), stored in the se.fit element

... for S3 consistency

integrate for *.fi methods, see Details below.

Details

The first 4 arguments are the same in each predict function. The latter 2 are specific to certain
functions. For line transects, the effective strip half-width (esw=TRUE) is the integral of the fitted
detection function over either 0 to W or the specified int.range. The predicted detection probabil-
ity is the average probability which is simply the integral divided by the distance range. For point
transect models, esw=TRUE calculates the effective area of detection (commonly referred to as "nu",
this is the integral of 2/width^2 * rg(r).

Fitted detection probabilities are stored in the model object and these are returned unless compute=TRUE
or newdata is specified. compute=TRUE is used to estimate numerical derivatives for use in delta
method approximations to the variance.

For method="io.fi" or method="trial.fi" if integrate=FALSE, predict returns the value of
the conditional detection probability and if integrate=TRUE, it returns the average conditional
detection probability by integrating over x (distance) with respect to a uniform distribution.

Note that the ordering of the returned results when no new data is supplied (the "fitted" values) will
not necessarily be the same as the data supplied to ddf, the data (and hence results from predict)
will be sorted by object ID (object) then observer ID (observer).

Value

For all but the exceptions below, the value is a list with a single element: fitted, a vector of average
detection probabilities or esw values for each observation in the original data ornewdata

For predict.ds, if se.fit=TRUE there is an additional element $se.fit, which contains the stan-
dard errors of the probabilities of detection or ESW.

For predict.io.fi,predict.trial.fi,predict.rem.fi with integrate=TRUE, the value is a
list with one element: fitted, which is a vector of integrated (average) detection probabilities for
each observation in the original data or newdata.

For predict.io.fi, predict.trial.fi, or predict.rem.fi with integrate=FALSE, the value
is a list with the following elements:

fitted p(y) values

p1 p1|2(y), conditional detection probability for observer 1

p2 p2|1(y), conditional detection probability for observer 2

fitted p.(y) = p1|2(y) + p2|1(y) − p1|2(y) ∗ p2|1(y), conditional detection probability of being
seen by either observer

Note

Each function is called by the generic function predict for the appropriate ddf model object. They
can be called directly by the user, but it is typically safest to use predict which calls the appropriate
function based on the type of model.

112 print.ddf.gof

Author(s)

Jeff Laake, David L Miller

See Also

ddf, summary.ds, plot.ds

print.ddf Simple pretty printer for distance sampling analyses

Description

Simply prints out summary of the model which was fitted. For more detailed information see
summary.

Usage

S3 method for class 'ddf'
print(x, ...)

Arguments

x a ddf object

... not passed through, just for S3 compatibility.

Author(s)

David L. Miller

print.ddf.gof Prints results of goodness of fit tests for detection functions

Description

Provides formatted output for results of goodness of fit tests: chi-square, Kolmogorv-Smirnov and
Cramer-von Mises test as appropriate.

Usage

S3 method for class 'ddf.gof'
print(x, digits = 3, ...)

print.det.tables 113

Arguments

x result of call to ddf.gof

digits number of digits to round chi-squared table values to

... unused unspecified arguments for generic print

Value

None

Author(s)

Jeff Laake

See Also

ddf.gof

print.det.tables Print results of observer detection tables

Description

Provides formatted output for detection tables

Usage

S3 method for class 'det.tables'
print(x, ...)

Arguments

x result of call to ddf

... unused unspecified arguments for generic print

Value

None

Author(s)

Jeff Laake

See Also

plot.det.tables

114 print.p_dist_table

print.dht Prints density and abundance estimates

Description

Outputs summary statistics, abundance and density by region (if any) and optionally a correlation
matrix if more than one region.

Usage

S3 method for class 'dht'
print(x, cor = FALSE, bysample = FALSE, vcmatrices = FALSE, ...)

Arguments

x dht object that results from call to dht for a specific ddf object

cor if TRUE outputs correlation matrix of estimates

bysample if TRUE, prints results for each sample

vcmatrices if TRUE, prints variance-covariance matrices

... unspecified and unused arguments for S3 consistency

Value

None

Author(s)

Jeff Laake

See Also

dht

print.p_dist_table Print distribution of probabilities of detection

Description

Just a pretty printer for the table of probabilities of detection.

Usage

S3 method for class 'p_dist_table'
print(x, digits = 2, ...)

print.summary.ds 115

Arguments

x output from p_dist_table

digits number of significant digits to print

... other arguments to be passed to print.data.frame

Value

just prints the table and the range of ps

Author(s)

David L Miller

print.summary.ds Print summary of distance detection function model object

Description

Provides a brief summary of data and fitted detection probability model parameters, model selection
criterion, and optionally abundance in the covered (sampled) region and its standard error. What is
printed depends on the corresponding call to summary.

Usage

S3 method for class 'summary.ds'
print(x, ...)

Arguments

x a summary of ddf model object

... unspecified and unused arguments for S3 consistency

Author(s)

Jeff Laake

See Also

summary.ds

116 print.summary.io.fi

print.summary.io Print summary of distance detection function model object

Description

Provides a brief summary of data and fitted detection probability model parameters, model selection
criterion, and optionally abundance in the covered (sampled) region and its standard error. What is
printed depends on the corresponding call to summary.

Usage

S3 method for class 'summary.io'
print(x, ...)

Arguments

x a summary of ddf model object

... unspecified and unused arguments for S3 consistency

Author(s)

Jeff Laake

See Also

summary.io

print.summary.io.fi Print summary of distance detection function model object

Description

Provides a brief summary of data and fitted detection probability model parameters, model selection
criterion, and optionally abundance in the covered (sampled) region and its standard error. What is
printed depends on the corresponding call to summary.

Usage

S3 method for class 'summary.io.fi'
print(x, ...)

Arguments

x a summary of ddf model object

... unspecified and unused arguments for S3 consistency

print.summary.rem 117

Author(s)

Jeff Laake

See Also

summary.io.fi

print.summary.rem Print summary of distance detection function model object

Description

Provides a brief summary of data and fitted detection probability model parameters, model selection
criterion, and optionally abundance in the covered (sampled) region and its standard error. What is
printed depends on the corresponding call to summary.

Usage

S3 method for class 'summary.rem'
print(x, ...)

Arguments

x a summary of ddf model object

... unspecified and unused arguments for S3 consistency

Author(s)

Jeff Laake

See Also

summary.rem

118 print.summary.trial

print.summary.rem.fi Print summary of distance detection function model object

Description

Provides a brief summary of data and fitted detection probability model parameters, model selection
criterion, and optionally abundance in the covered (sampled) region and its standard error. What is
printed depends on the corresponding call to summary.

Usage

S3 method for class 'summary.rem.fi'
print(x, ...)

Arguments

x a summary of ddf model object

... unspecified and unused arguments for S3 consistency

Author(s)

Jeff Laake

See Also

summary.rem.fi

print.summary.trial Print summary of distance detection function model object

Description

Provides a brief summary of data and fitted detection probability model parameters, model selection
criterion, and optionally abundance in the covered (sampled) region and its standard error. What is
printed depends on the corresponding call to summary.

Usage

S3 method for class 'summary.trial'
print(x, ...)

Arguments

x a summary of ddf model object

... unspecified and unused arguments for S3 consistency

print.summary.trial.fi 119

Author(s)

Jeff Laake

See Also

summary.trial

print.summary.trial.fi

Print summary of distance detection function model object

Description

Provides a brief summary of data and fitted detection probability model parameters, model selection
criterion, and optionally abundance in the covered (sampled) region and its standard error. What is
printed depends on the corresponding call to summary.

Usage

S3 method for class 'summary.trial.fi'
print(x, ...)

Arguments

x a summary of ddf model object

... unspecified and unused arguments for S3 consistency

Author(s)

Jeff Laake

See Also

summary.trial.fi

120 prob.deriv

prob.deriv Derivatives for variance of average p and average p(0) variance

Description

Used in call to DeltaMethod from prob.se to get first derivatives

Usage

prob.deriv(par, model, parfct, observer = NULL, fittedmodel = NULL)

Arguments

par detection function parameter values

model ddf model object

parfct function of detection probabilities; currently only average (over covariates) de-
tection probability p integrated over distance or average (over covariates) detec-
tion probability at distance 0; p(0)

observer 1,2,3 for primary, secondary, or duplicates for average p(0); passed to fct

fittedmodel full fitted ddf model when trial.fi or io.fi is called from trial or io re-
spectively

Details

Need to add equations here as I do not think they exist in any of the texts. These should probably
be checked with simulation.

Value

Vector of values from fct at specified parameter values

Author(s)

Jeff Laake

See Also

prob.se

prob.se 121

prob.se Average p and average p(0) variance

Description

Computes components of variance for average p=n/N and average p(0) with weights based on em-
pirical covariate distribution, if it contains covariates.

Usage

prob.se(model, fct, vcov, observer = NULL, fittedmodel = NULL)

Arguments

model ddf model object

fct function of detection probabilities; currently only average (over covariates) de-
tection probability p integrated over distance or average (over covariates) detec-
tion probability at distance 0; p(0)

vcov variance-covariance matrix of parameter estimates

observer 1,2,3 for primary, secondary, or duplicates for average p(0); passed to fct

fittedmodel full fitted ddf model when trial.fi or io.fi is called from trial or io re-
spectively

Details

Need to add equations here as I do not think they exist in any of the texts. These should probably
be checked with simulation.

Value

var variance

partial partial derivatives of parameters with respect to fct

covar covariance of n and average p or p(0)

Author(s)

Jeff Laake

See Also

prob.deriv

122 process.data

process.data Process data for fitting distance sampling detection function

Description

Sets up dataframe and does some basic error checking. Adds needed fields to dataframe and to
meta.data.

Usage

process.data(data, meta.data = list(), check = TRUE)

Arguments

data dataframe object

meta.data meta.data options; see ddf for a description

check if TRUE check data for errors in the mrds structure; for method="ds" check=FALSE

Details

The function does a number of error checking tasks, creating fields and adding to meta.data in-
cluding:

1) If check=TRUE, check to make sure the record structure is okay for mrds data. The number of
primary records (observer=1) must equal the number of secondary records (observer=2). Also, a
field in the dataframe is created timesseen which counts the number of times an object was detected
0,1,2; if timesseen=0 then the record is tossed from the analysis. Also if there are differences in
the data (distance, size, covariates) for observer 1 and 2 a warning is issued that the analysis may
fail. The code assumes these values are the same for both observers.

2) Based on the presence of fields distbegin and distend, a determination is made of whether the
data analysis should be based on binned distances and a field binned is created, which is TRUE if
the distance for the observation is binned. By assigning for each observation this allows an analysis
of a mixture of binned and unbinned distances.

4) Data are restricted such that distances are not greater than width and not less than left if those
values are specified in meta.data. If they are not specified then left defaults to 0 and width
defaults to the largest distance measurement.

5) Determine if an integration range (int.begin and int.end has been specified for the observa-
tions. If it has, add the structure to meta.data. The integration range is typically used for aerial
surveys in which the altitude varies such that the strip width (left to width) changes with a change
in altitude.

6) Fields defined as factors are cleaned up such that any unused levels are eliminated.

7) If the restrictions placed on the data, eliminated all of the data, the function stops with an error
message

pronghorn 123

Value

xmat processed data.frame with added fields

meta.data meta.data list

Author(s)

Jeff Laake

pronghorn Pronghorn aerial survey data from Wyoming

Description

Detections of pronghorn from fixed-wing aerial surveys in Southeastern Wyoming using four an-
gular bins defined by strut marks. Illustrates data where altitude above ground level (AGL) varies
during the survey.

Format

A data frame with 660 observations on the following 5 variables.

STRATUM a numeric vector

direction a factor with levels N S representing the survey direction

AGL height above ground level

Band a factor with levels A B C D which represent angular bands between breaks at 35.42,44.56,51.52,61.02,70.97
degrees. These angles were set based on selected distance bins based on the target AGL.

cluster number of pronghorn in the observed cluster

Details

Each record is an observed cluster of pronghorn. The data provide the stratum for the observation,
the direction of travel, the AGL at the time of the observation, the angular bin which contained the
center of the pronghorn cluster(group), and the number of pronghorn in the group. The angular bins
were defined by a combination of two window and five wing strut marks to define bin cutpoints
for perpendicular ground distances of 0-65, 65-90, 90-115, 115-165 and 165-265 meters when the
plane is 300’ (91.4 meters) above ground level. The inner band is considered a blind region due to
obstruction of view beneath the plane; thus th the line is offset 65 meters from underneath the plane.

Source

Data provided courtesy of Rich Guenzel of Wyoming Game and Fish.

References

Laake, J., R. J. Guenzel, J. L. Bengtson, P. Boveng, M. Cameron, and M. B. Hanson. 2008. Coping
with variation in aerial survey protocol for line-transect sampling. Wildlife Research 35:289-298.

124 ptdata.dual

ptdata.distance Single observer point count data example from Distance

Description

Single observer point count data example from Distance

Format

The format is 144 obs of 6 variables: distance: numeric distance from center observer: Factor w/
2 levels "1","2": 1 2 1 2 1 2 1 2 1 2 ... detected: numeric 0/1 object: sequential object number
Sample.Label: point label Region.Label: single region label

Examples

data(ptdata.distance)
xx <- ddf(dsmodel = ~cds(key="hn", formula = ~1), data = ptdata.distance,

method = "ds", meta.data = list(point=TRUE))
summary(xx)
plot(xx,main="Distance point count data")
ddf.gof(xx)
Regions <- data.frame(Region.Label=1,Area=1)
Samples <- data.frame(Sample.Label=1:30,

Region.Label=rep(1,30),
Effort=rep(1,30))

print(dht(xx,sample.table=Samples,region.table=Regions))

ptdata.dual Simulated dual observer point count data

Description

Simulated dual observer point count data with detection p(0)=0.8; hn sigma=30; w=100 for both
observers with dependency y>0, gamma=0.1

Format

The format is 420 obs of 6 variables: distance: numeric distance from center observer: Factor w/ 2
levels "1","2": 1 2 1 2 1 2 1 2 1 2 ... detected: numeric 0/1 person: Factor with 2 levels A,B pair:
Factor with 2 levels "AB" BA" $ object : sequential object number

ptdata.removal 125

Examples

data(ptdata.dual)
xx <- ddf(mrmodel=~glm(formula=~distance),

dsmodel = ~cds(key="hn", formula = ~1),
data = ptdata.dual, method = "io", meta.data = list(point=TRUE))

summary(xx)
plot(xx,main="Simulated point count data")

ptdata.removal Simulated removal observer point count data

Description

Simulated removal observer point count data with detection p(0)=0.8; hn sigma=30; w=100 for both
observers with dependency y>0, gamma=0.1

Format

The format is 408 obs of 6 variables: distance: numeric distance from center observer: Factor w/ 2
levels "1","2": 1 2 1 2 1 2 1 2 1 2 ... detected: numeric 0/1 person: Factor with 2 levels A,B pair:
Factor with 2 levels "AB" BA" object: sequential object number

Examples

data(ptdata.removal)
xx <- ddf(mrmodel=~glm(formula=~distance),

dsmodel = ~cds(key="hn", formula = ~1),
data = ptdata.removal, method = "rem",
meta.data = list(point=TRUE))

summary(xx)
plot(xx,main="Simulated point count data")

ptdata.single Simulated single observer point count data

Description

Simulated single observer point count data with detection p(0)=1; hn sigma=30; w=100

Format

The format is 341 obs of 4 variables: ..$ distance: numeric distance from center $ observer: Factor
w/ 2 levels "1","2": 1 2 1 2 1 2 1 2 1 2$ detected: numeric 0/1 $ object : sequential object
number

126 qqplot.ddf

Examples

data(ptdata.single)
xx=ddf(dsmodel = ~cds(key="hn", formula = ~1), data = ptdata.single,

method = "ds", meta.data = list(point=TRUE))
summary(xx)
plot(xx,main="Simulated point count data")

qqplot.ddf Quantile-quantile plot and goodness of fit tests for detection functions

Description

Constructs a quantile-quantile (Q-Q) plot for fitted model as a graphical check of goodness of
fit. Formal goodness of fit testing for detection function models using Kolmogorov-Smirnov and
Cramer-von Mises tests. Both tests are based on looking at the quantile-quantile plot produced by
qqplot.ddf and deviations from the line x=y.

Usage

qqplot.ddf(model, plot = TRUE, nboot = 100, ks = FALSE, ...)

Arguments

model fitted distance detection function model object

plot the Q-Q plot be plotted or just report statistics?

nboot number of replicates to use to calculate p-values for the goodness of fit test
statistics

ks perform the Kolmogorov-Smirnov test (this involves many bootstraps so can
take a while)

... additional arguments passed to plot

Details

The Kolmogorov-Smirnov test asks the question "what’s the largest vertical distance between a
point and the y=x line?" It uses this distance as a statistic to test the null hypothesis that the samples
(EDF and CDF in our case) are from the same distribution (and hence our model fits well). If the
deviation between the y=x line and the points is too large we reject the null hypothesis and say the
model doesn’t have a good fit.

Rather than looking at the single biggest difference between the y=x line and the points in the Q-Q
plot, we might prefer to think about all the differences between line and points, since there may
be many smaller differences that we want to take into account rather than looking for one large
deviation. Its null hypothesis is the same, but the statistic it uses is the sum of the deviations from
each of the point to the line.

rem.glm 127

Value

A list of goodness of fit related values:

edf matrix of lower and upper empirical distribution function values

cdf fitted cumulative distribution function values

ks list with K-S statistic (Dn) and p-value (p)

CvM list with CvM statistic (W) and p-value (p)

Details

Note that a bootstrap procedure is required to ensure that the p-values from the procedure are cor-
rect as the we are comparing the cumulative distribution function (CDF) and empirical distribution
function (EDF) and we have estimated the parameters of the detection function.

Author(s)

Jeff Laake, David L Miller

References

Burnham, K.P., S.T. Buckland, J.L. Laake, D.L. Borchers, T.A. Marques, J.R.B. Bishop, and L.
Thomas. 2004. Further topics in distance sampling. pp: 385-389. In: Advanced Distance Sampling,
eds. S.T. Buckland, D.R.Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas.
Oxford University Press.

See Also

ddf.gof, cdf.ds

rem.glm Iterative offset model fitting of mark-recapture with removal model

Description

Detection function fitting from mark-recapture data with a removal configuration in which a sec-
ondary observer knows what the primary observer detects and detects objects missed by the primary
observer. The iterative offset glm/gam uses an offset to compensate for the conditioning on the set
of objects seen by either observer (eg 00 those missed by both observers are not included in the
analysis. This function is similar to io.glm.

128 rem.glm

Usage

rem.glm(
datavec,
fitformula,
eps = 1e-05,
iterlimit = 500,
GAM = FALSE,
gamplot = TRUE,
datavec2

)

Arguments

datavec dataframe containing records seen by either observer 1 or 2

fitformula logit link formula

eps convergence criterion

iterlimit maximum number of iterations allowed

GAM uses GAM instead of GLM for fitting

gamplot set to TRUE to get a gam plot object if GAM=TRUE

datavec2 dataframe containing all records for observer 1 and observer 2 as in io.glm form;
this is used in case there is an observer(not platform effect)

Details

The only difference between this function and io.glm is the offset and the data construction because
there is only one detection function being estimated for the primary observer. The two functions
could be merged.

Value

list of class("remglm","glm","lm") or class("remglm","gam")

glmobj GLM or GAM object

offsetvalue offsetvalues from iterative fit

plotobj gam plot object (if GAM & gamplot==TRUE, else NULL)

Note

currently the code in this function for GAMs has been commented out until the remainder of the
mrds package will work with GAMs.

Author(s)

Jeff Laake

rescale_pars 129

References

Buckland, S.T., J.M. breiwick, K.L. Cattanach, and J.L. Laake. 1993. Estimated population size of
the California gray whale. Marine Mammal Science, 9:235-249.

Burnham, K.P., S.T. Buckland, J.L. Laake, D.L. Borchers, T.A. Marques, J.R.B. Bishop, and L.
Thomas. 2004. Further topics in distance sampling. pp: 360-363. In: Advanced Distance Sampling,
eds. S.T. Buckland, D.R.Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas.
Oxford University Press.

rescale_pars Calculate the parameter rescaling for parameters associated with co-
variates

Description

This will calculate the rescaling needed when covariates to be included in the scale of the detection
function are "too big". Based on code from optimx.

Usage

rescale_pars(initialvalues, ddfobj)

Arguments

initialvalues starting values for the optimisation

ddfobj detection function object

Details

Derivative-free methods like nlminb are sensitive to the parameters being poorly scaled. This can
also cause problems for quasi-Newton methods too (at least, bad scaling won’t _help_ the optimi-
sation). So here we rescale the parameters if necessary (unless we already got scaling from control)

Author(s)

David L Miller

130 setbounds

sample_ddf Generate data from a fitted detection function and refit the model

Description

Generate data from a fitted detection function and refit the model

Usage

sample_ddf(ds.object)

Arguments

ds.object a fitted detection function object

Note

This function changes the random number generator seed. To avoid any potential side-effects,
use something like: seed <-get(".Random.seed",envir=.GlobalEnv) before running code and
assign(".Random.seed",seed,envir=.GlobalEnv) after.

Author(s)

David L. Miller

setbounds Set parameter bounds

Description

Set values of lower and upper bounds and check lengths of any user-specified values

Usage

setbounds(lowerbounds, upperbounds, initialvalues, ddfobj, width, left)

Arguments

lowerbounds vector of lower bounds

upperbounds vector of upper bounds

initialvalues vector of initial parameter estimates

ddfobj distance detection function object

width truncation distance

left left truncation distance

setcov 131

Value

lower vector of lower bounds

upper vector of upper bounds

setlower logical indicating whether user set lower bounds

setupper logical indicating whether user set upper bounds

Author(s)

Jeff Laake

setcov Creates design matrix for covariates in detection function

Description

This function creates a design matrix for the g(0) or scale covariates using the input model formula.
It returns a list which contains 2 elements: 1) dim: the dimension (number of columns) of the design
matrix, and 2) cov: the constructed design matrix. This function is relatively simple because it uses
the built-in function model.matrix which does the majority of the work. This function handles 2
exceptions "~.", the null model with 0 columns and "~1" the intercept only model - a column of 1s.
If a model other than the 2 exceptions is provided, it calls model.matrix to construct the columns.
If any of the columns of the design matrix are all 0’s the column is removed. This occurs when
there is no data for a particular factor.

Usage

setcov(dmat, model)

Arguments

dmat data matrix

model model formula

Value

a design matrix for the specified data and model

Author(s)

Jeff Laake

132 sim.mix

setinitial.ds Set initial values for detection function based on distance sampling

Description

For a given detection function, it computes the initial values for the parameters including scale and
shape parameters and adjustment function parameters if any. If there are user-defined initial values
only the parameters not specified by the user are computed.

Usage

setinitial.ds(ddfobj, width, initial, point, left)
sethazard(ddfobj, dmat, width, left, point)

Arguments

ddfobj distance detection function object

width half-width of transect or radius of point count

initial list of user-defined initial values with possible elements: scale, shape, adjustment

point if TRUE, point count data; otherwise, line transect data

left left truncation

dmat xmat from ddfobj

Value

scale vector of initial scale parameter values

shape vector of initial shape parameter values

adjustment vector of initial adjustment function parameter values

Author(s)

Jeff Laake, David L Miller

sim.mix Simulation of distance sampling data via mixture models Allows one
to simulate line transect distance sampling data using a mixture of
half-normal detection functions.

Description

Simulation of distance sampling data via mixture models Allows one to simulate line transect dis-
tance sampling data using a mixture of half-normal detection functions.

solvecov 133

Usage

sim.mix(n, sigma, mix.prop, width, means = 0)

Arguments

n number of samples to generate

sigma vector of scale parameters

mix.prop vector of mixture proportions (same length as sigma)

width truncation

means vector of means (used to generate wacky, non-monotonic data)

Value

distances a vector of distances

Note

At the moment this is TOTALLY UNSUPPORTED! Please don’t use it for anything important!

Author(s)

David Lawrence Miller

solvecov Invert of covariance matrices

Description

Tries to invert a matrix by solve. If this fails because of singularity, an eigenvector decomposi-
tion is computed, and eigenvalues below 1/cmax are replaced by 1/cmax, i.e., cmax will be the
corresponding eigenvalue of the inverted matrix.

Usage

solvecov(m, cmax = 1e+10)

Arguments

m a numeric symmetric matrix.

cmax a positive value, see above.

Value

A list with the following components: inv the inverted matrix, coll TRUE if solve failed because
of singularity.

134 stake77

Source

solvecov code was taken from package fpc: Christian Hennig

Author(s)

Christian Hennig

See Also

solve, eigen

stake77 Wooden stake data from 1977 survey

Description

Multiple surveys by different observers of a single 1km transect containing 150 wooden stakes
placed randomly throughout a 40 m strip (20m on either side).

Format

A data frame with 150 observations on the following 10 variables.

StakeNo unique number for each stake 1-150

PD perpendicular distance at which the stake was placed from the line

Obs1 0/1 whether missed/seen by observer 1

Obs2 0/1 whether missed/seen by observer 2

Obs3 0/1 whether missed/seen by observer 3

Obs4 0/1 whether missed/seen by observer 4

Obs5 0/1 whether missed/seen by observer 5

Obs6 0/1 whether missed/seen by observer 6

Obs7 0/1 whether missed/seen by observer 7

Obs8 0/1 whether missed/seen by observer 8

Source

Laake, J. 1978. Line transect estimators robust to animal movement. M.S. Thesis. Utah State
University, Logan, Utah. 55p.

References

Burnham, K. P., D. R. Anderson, and J. L. Laake. 1980. Estimation of Density from Line Transect
Sampling of Biological Populations. Wildlife Monographs:7-202.

stake77 135

Examples

data(stake77)
Extract functions for stake data and put in the mrds format
extract.stake <- function(stake,obs){

extract.obs <- function(obs){
example <- subset(stake,eval(parse(text=paste("Obs",obs,"==1",sep=""))),

select="PD")
example$distance <- example$PD
example$object <- 1:nrow(example)
example$PD <- NULL
return(example)

}
if(obs!="all"){

return(extract.obs(obs=obs))
}else{

example <- NULL
for(i in 1:(ncol(stake)-2)){

df <- extract.obs(obs=i)
df$person <- i
example <- rbind(example,df)

}
example$person <- factor(example$person)
example$object <- 1:nrow(example)
return(example)

}
}
extract.stake.pairs <- function(stake,obs1,obs2,removal=FALSE){

obs1 <- paste("Obs",obs1,sep="")
obs2 <- paste("Obs",obs2,sep="")
example <- subset(stake,eval(parse(text=paste(obs1,"==1 |",obs2,"==1 ",

sep=""))),select=c("PD",obs1,obs2))
names(example) <- c("distance","obs1","obs2")
detected <- c(example$obs1,example$obs2)
example <- data.frame(object = rep(1:nrow(example),2),

distance = rep(example$distance,2),
detected = detected,
observer = c(rep(1,nrow(example)),

rep(2,nrow(example))))
if(removal) example$detected[example$observer==2] <- 1
return(example)

}
extract data for observer 1 and fit a single observer model
stakes <- extract.stake(stake77,1)
ds.model <- ddf(dsmodel = ~mcds(key = "hn", formula = ~1), data = stakes,

method = "ds", meta.data = list(width = 20))
plot(ds.model,breaks=seq(0,20,2),showpoints=TRUE)
ddf.gof(ds.model)

extract data from observers 1 and 3 and fit an io model
stkpairs <- extract.stake.pairs(stake77,1,3,removal=FALSE)
io.model <- ddf(dsmodel = ~mcds(key = "hn", formula=~1),

mrmodel=~glm(formula=~distance),

136 stake78

data = stkpairs, method = "io")
summary(io.model)
par(mfrow=c(3,2))
plot(io.model,breaks=seq(0,20,2),showpoints=TRUE,new=FALSE)
dev.new()
ddf.gof(io.model)

stake78 Wooden stake data from 1978 survey

Description

Multiple surveys by different observers of a single 1km transect containing 150 wooden stakes
placed based on expected uniform distribution throughout a 40 m strip (20m on either side).

Format

A data frame with 150 observations on the following 13 variables.

StakeNo unique number for each stake 1-150

PD perpendicular distance at which the stake was placed from the line

Obs1 0/1 whether missed/seen by observer 1

Obs2 0/1 whether missed/seen by observer 2

Obs3 0/1 whether missed/seen by observer 3

Obs4 0/1 whether missed/seen by observer 4

Obs5 0/1 whether missed/seen by observer 5

Obs6 0/1 whether missed/seen by observer 6

Obs7 0/1 whether missed/seen by observer 7

Obs8 0/1 whether missed/seen by observer 8

Obs9 0/1 whether missed/seen by observer 9

Obs10 0/1 whether missed/seen by observer 10

Obs11 0/1 whether missed/seen by observer 11

Details

The 1997 survey was based on a single realization of a uniform distribution. Because it was a single
transect and there was no randomization of the distances for each survey, we repeated the exper-
iment and used distances that provided a uniform distribution but randomly sorted the positions
along the line so there was no pattern obvious to the observer.

Source

Laake, J. 1978. Line transect estimators robust to animal movement. M.S. Thesis. Utah State
University, Logan, Utah. 55p.

stake78 137

References

Burnham, K. P., D. R. Anderson, and J. L. Laake. 1980. Estimation of Density from Line Transect
Sampling of Biological Populations. Wildlife Monographs:7-202.

Examples

data(stake78)
data(stake77)
compare distribution of distances for all stakes
hist(stake77$PD)
hist(stake78$PD)
Extract stake data and put in the mrds format for model fitting.
extract.stake <- function(stake,obs){

extract.obs <- function(obs){
example <- subset(stake,eval(parse(text=paste("Obs",obs,"==1",sep=""))),

select="PD")
example$distance <- example$PD
example$object <- 1:nrow(example)
example$PD <- NULL
return(example)

}
if(obs!="all"){

return(extract.obs(obs=obs))
}else{
example <- NULL
for(i in 1:(ncol(stake)-2)){

df <- extract.obs(obs=i)
df$person <- i
example <- rbind(example,df)

}
example$person <- factor(example$person)
example$object <- 1:nrow(example)
return(example)

}
}
extract.stake.pairs <- function(stake,obs1,obs2,removal=FALSE){

obs1 <- paste("Obs",obs1,sep="")
obs2 <- paste("Obs",obs2,sep="")
example <- subset(stake,eval(parse(text=paste(obs1,"==1 |",obs2,"==1 ",

sep=""))), select=c("PD",obs1,obs2))
names(example) <- c("distance","obs1","obs2")
detected <- c(example$obs1,example$obs2)
example <- data.frame(object=rep(1:nrow(example),2),

distance=rep(example$distance,2),
detected = detected,
observer=c(rep(1,nrow(example)),

rep(2,nrow(example))))
if(removal) example$detected[example$observer==2] <- 1
return(example)

}

extract data for observer 10 and fit a single observer model

138 summary.ds

stakes <- extract.stake(stake78,10)
ds.model <- ddf(dsmodel = ~mcds(key = "hn", formula = ~1), data = stakes,

method = "ds", meta.data = list(width = 20))
plot(ds.model,breaks=seq(0,20,2),showpoints=TRUE)
ddf.gof(ds.model)

extract data from observers 5 and 7 and fit an io model
stkpairs <- extract.stake.pairs(stake78,5,7,removal=FALSE)
io.model <- ddf(dsmodel = ~mcds(key = "hn", formula=~1),

mrmodel=~glm(formula=~distance),
data = stkpairs, method = "io")

summary(io.model)
par(mfrow=c(3,2))
plot(io.model,breaks=seq(0,20,2),showpoints=TRUE,new=FALSE)
ddf.gof(io.model)

summary.ds Summary of distance detection function model object

Description

Provides a brief summary of data and fitted detection probability model parameters, model selection
criterion, and optionally abundance in the covered (sampled) region and its standard error.

Usage

S3 method for class 'ds'
summary(object, se = TRUE, N = TRUE, ...)

Arguments

object a ddf model object

se if TRUE, computes standard errors

N if TRUE, computes abundance in covered (sampled) region

... unspecified and unused arguments for S3 consistency

Details

The argument N is used to suppress computation of abundance and average detection probability in
calls to summarize the ds and either io.fi or trial.fi for summaries of io and trial objects
respectively which are composed of a ds model object and a mark-recapture model object. The
corresponding print function is called to print the summary results.

Value

list of extracted and summarized objects

summary.io 139

Note

This function is called by the generic function summary for any ddf model object. Each function
can be called directly by the user, but it is typically safest to use the generic function summary which
calls the appropriate function based on the type of ddf model.

Author(s)

Jeff Laake

summary.io Summary of distance detection function model object

Description

Provides a brief summary of data and fitted detection probability model parameters, model selection
criterion, and optionally abundance in the covered (sampled) region and its standard error.

Usage

S3 method for class 'io'
summary(object, se = TRUE, ...)

Arguments

object a ddf model object
se if TRUE, computes standard errors
... unspecified and unused arguments for S3 consistency

Details

The argument N is used to suppress computation of abundance and average detection probability in
calls to summarize the ds and either io.fi or trial.fi for summaries of io and trial objects
respectively which are composed of a ds model object and a mark-recapture model object. The
corresponding print function is called to print the summary results.

Value

list of extracted and summarized objects

Note

This function is called by the generic function summary for any ddf model object. Each function
can be called directly by the user, but it is typically safest to use the generic function summary which
calls the appropriate function based on the type of ddf model.

Author(s)

Jeff Laake

140 summary.io.fi

summary.io.fi Summary of distance detection function model object

Description

Provides a brief summary of data and fitted detection probability model parameters, model selection
criterion, and optionally abundance in the covered (sampled) region and its standard error.

Usage

S3 method for class 'io.fi'
summary(object, se = TRUE, N = TRUE, fittedmodel = NULL, ddfobj = NULL, ...)

Arguments

object a ddf model object

se if TRUE, computes standard errors

N if TRUE, computes abundance in covered (sampled) region

fittedmodel full fitted model when called from trial or io

ddfobj distance sampling object description

... unspecified and unused arguments for S3 consistency

Details

The argument N is used to suppress computation of abundance and average detection probability in
calls to summarize the ds and either io.fi or trial.fi for summaries of io and trial objects
respectively which are composed of a ds model object and a mark-recapture model object. The
corresponding print function is called to print the summary results.

Value

list of extracted and summarized objects

Note

This function is called by the generic function summary for any ddf model object. Each function
can be called directly by the user, but it is typically safest to use the generic function summary which
calls the appropriate function based on the type of ddf model.

Author(s)

Jeff Laake

summary.rem 141

summary.rem Summary of distance detection function model object

Description

Provides a brief summary of data and fitted detection probability model parameters, model selection
criterion, and optionally abundance in the covered (sampled) region and its standard error.

Usage

S3 method for class 'rem'
summary(object, se = TRUE, ...)

Arguments

object a ddf model object

se if TRUE, computes standard errors

... unspecified and unused arguments for S3 consistency

Details

The argument N is used to suppress computation of abundance and average detection probability in
calls to summarize the ds and either io.fi or trial.fi for summaries of io and trial objects
respectively which are composed of a ds model object and a mark-recapture model object. The
corresponding print function is called to print the summary results.

Value

list of extracted and summarized objects

Note

This function is called by the generic function summary for any ddf model object. Each function
can be called directly by the user, but it is typically safest to use the generic function summary which
calls the appropriate function based on the type of ddf model.

Author(s)

Jeff Laake

142 summary.rem.fi

summary.rem.fi Summary of distance detection function model object

Description

Provides a brief summary of data and fitted detection probability model parameters, model selection
criterion, and optionally abundance in the covered (sampled) region and its standard error.

Usage

S3 method for class 'rem.fi'
summary(object, se = TRUE, N = TRUE, fittedmodel = NULL, ...)

Arguments

object a ddf model object

se if TRUE, computes standard errors

N if TRUE, computes abundance in covered (sampled) region

fittedmodel full fitted model when called from trial or io

... unspecified and unused arguments for S3 consistency

Details

The argument N is used to suppress computation of abundance and average detection probability in
calls to summarize the ds and either io.fi or trial.fi for summaries of io and trial objects
respectively which are composed of a ds model object and a mark-recapture model object. The
corresponding print function is called to print the summary results.

Value

list of extracted and summarized objects

Note

This function is called by the generic function summary for any ddf model object. Each function
can be called directly by the user, but it is typically safest to use the generic function summary which
calls the appropriate function based on the type of ddf model.

Author(s)

Jeff Laake

summary.trial 143

summary.trial Summary of distance detection function model object

Description

Provides a brief summary of data and fitted detection probability model parameters, model selection
criterion, and optionally abundance in the covered (sampled) region and its standard error.

Usage

S3 method for class 'trial'
summary(object, se = TRUE, ...)

Arguments

object a ddf model object

se if TRUE, computes standard errors

... unspecified and unused arguments for S3 consistency

Details

The argument N is used to suppress computation of abundance and average detection probability in
calls to summarize the ds and either io.fi or trial.fi for summaries of io and trial objects
respectively which are composed of a ds model object and a mark-recapture model object. The
corresponding print function is called to print the summary results.

Value

list of extracted and summarized objects

Note

This function is called by the generic function summary for any ddf model object. Each function
can be called directly by the user, but it is typically safest to use the generic function summary which
calls the appropriate function based on the type of ddf model.

Author(s)

Jeff Laake

144 summary.trial.fi

summary.trial.fi Summary of distance detection function model object

Description

Provides a brief summary of data and fitted detection probability model parameters, model selection
criterion, and optionally abundance in the covered (sampled) region and its standard error.

Usage

S3 method for class 'trial.fi'
summary(object, se = TRUE, N = TRUE, fittedmodel = NULL, ...)

Arguments

object a ddf model object

se if TRUE, computes standard errors

N if TRUE, computes abundance in covered (sampled) region

fittedmodel full fitted model when called from trial or io

... unspecified and unused arguments for S3 consistency

Details

The argument N is used to suppress computation of abundance and average detection probability in
calls to summarize the ds and either io.fi or trial.fi for summaries of io and trial objects
respectively which are composed of a ds model object and a mark-recapture model object. The
corresponding print function is called to print the summary results.

Value

list of extracted and summarized objects

Note

This function is called by the generic function summary for any ddf model object. Each function
can be called directly by the user, but it is typically safest to use the generic function summary which
calls the appropriate function based on the type of ddf model.

Author(s)

Jeff Laake

survey.region.dht 145

survey.region.dht Extrapolate Horvitz-Thompson abundance estimates to entire sur-
veyed region

Description

Extrapolate Horvitz-Thompson abundance estimates to entire surveyed region

Usage

survey.region.dht(Nhat.by.sample, samples, width, left, point, areas.supplied)

Arguments

Nhat.by.sample dataframe of abundance by sample

samples samples table

width truncation width

left left truncation if any

point if TRUE point count otherwise line transect

areas.supplied if TRUE, covered area is extracted from the CoveredArea column of Nhat.by.sample

Value

Revised Nhat.by.sample dataframe containing estimates extrapolated to survey region

Note

Internal function called by dht and related functions.

Author(s)

Jeff Laake and David L Miller

test.breaks Test validity for histogram breaks(cutpoints)

Description

Determines whether user specified breaks for histograms are properly ordered and match the left
and right truncation.

Usage

test.breaks(breaks, left, width)

146 varn

Arguments

breaks vector of cutpoints (breaks) for distance histogram

left left truncation value

width right truncation value; either radius of point count or half-width of transect

Value

vector of breaks modified to be valid if necessary

Author(s)

Jeff Laake

varn Compute empirical variance of encounter rate

Description

Computes one of a series of possible variance estimates for the observed encounter rate for a set of
sample measurements (e.g., line lengths) and number of observations per sample.

Usage

varn(lvec,nvec,type)

covn(lvec, groups1, groups2, type)

Arguments

lvec vector of sample measurements (e.g., line lengths)

nvec vector of number observed

type choice of variance estimator to use for encounter rate

groups1 vector of number of groups observed

groups2 vector of number of individuals observed

Details

The choice of type follows the notation of Fewster et al. (2009) in that there are 8 choices of
encounter rate variance that can be computed for lines and one for points:

R2 random line placement with unequal line lengths (design-assisted estimator)

R3 random line placement, model-assisted estimator, based on true contagion process

R4 random line placement, model-assisted estimator, based on apparent contagion process

S1 systematic line placement, post-stratification with no strata overlap

varn 147

S2 systematic line placement, post-stratification with no strata overlap, variances weighted by line
length per stratum

O1 systematic line placement, post-stratification with overlapping strata (akin to S1)

O2 systematic line placement, post-stratification with overlapping strata (weighted by line length
per stratum, akin to S2)

O3 systematic line placement, post-stratification with overlapping strata, model-assisted estimator
with trend in encounter rate with line length

P2 random point placement, potentially unequal number of visits per point, design-based estimator

P3 random point placement, potentially unequal number of visits per point, model-based estimator

Default value is "R2", shown in Fewster et al. (2009) to have good performance for completely
random designs for lines. For systematic parallel line transect designs, Fewster et al. recommend
"O2". For point transects the default is "P2" (but "P3" is also available).

For the systematic estimators, pairs are assigned in the order they are given in the lengths and
groups vectors.

Value

Variance of encounter rate as defined by arguments

Note

This function is also used with different calling arguments to compute Innes et al variance of the
estimated abundances/length rather than observation encounter rate. The function covn is probably
only valid for R3 and R2. Currently, the R2 form is used for all types other than R3.

Author(s)

Jeff Laake, David L Miller

References

Fewster, R.M., S.T. Buckland, K.P. Burnham, D.L. Borchers, P.E. Jupp, J.L. Laake and L. Thomas.
2009. Estimating the encounter rate variance in distance sampling. Biometrics 65: 225-236.

Index

∗ Models
ddf, 21
ddf.ds, 27
ddf.io, 30
ddf.io.fi, 32
ddf.rem, 33
ddf.rem.fi, 35
ddf.trial, 36
ddf.trial.fi, 38
io.glm, 60
rem.glm, 127

∗ Statistical
ddf.ds, 27
ddf.io, 30
ddf.io.fi, 32
ddf.rem, 33
ddf.rem.fi, 35
ddf.trial, 36
ddf.trial.fi, 38
io.glm, 60
rem.glm, 127

∗ ~Statistical
ddf, 21

∗ ~utility
assign.default.values, 8

∗ datasets
book.tee.data, 11
lfbcvi, 65
lfgcwa, 71
pronghorn, 123
ptdata.distance, 124
ptdata.dual, 124
ptdata.removal, 125
ptdata.single, 125
stake77, 134
stake78, 136

∗ methods
adj.check.order, 6

∗ package

mrds-package, 4
∗ plot

plot.ds, 92
plot.io, 95
plot.io.fi, 97
plot.rem, 99
plot.rem.fi, 101
plot.trial, 103
plot.trial.fi, 104
plot_cond, 106
plot_uncond, 108

∗ utility
average.line, 9
average.line.cond, 10
cdf.ds, 12
cds, 13
check.mono, 15
compute.Nht, 17
covered.region.dht, 18
create.model.frame, 19
create.varstructure, 20
ddf.gof, 29
DeltaMethod, 39
dht, 44
dht.deriv, 48
dht.se, 49
flnl, 52
flt.var, 53
getpar, 54
gstdint, 56
integratepdf, 59
is.linear.logistic, 61
logit, 81
mcds, 82
NCovered, 86
predict.ds, 110
print.ddf.gof, 112
print.det.tables, 113
print.dht, 114

148

INDEX 149

print.summary.ds, 115
print.summary.io, 116
print.summary.io.fi, 116
print.summary.rem, 117
print.summary.rem.fi, 118
print.summary.trial, 118
print.summary.trial.fi, 119
process.data, 122
qqplot.ddf, 126
setcov, 131
summary.ds, 138
summary.io, 139
summary.io.fi, 140
summary.rem, 141
summary.rem.fi, 142
summary.trial, 143
summary.trial.fi, 144
survey.region.dht, 145
varn, 146

add.df.covar.line, 5
add_df_covar_line (add.df.covar.line), 5
adj.check.order, 6
adjfct.cos, 7
adjfct.herm, 7
adjfct.poly, 7
AIC.ddf, 7
AIC.ds (AIC.ddf), 7
AIC.io (AIC.ddf), 7
AIC.rem (AIC.ddf), 7
AIC.trial (AIC.ddf), 7
apex.gamma, 8
assign.default.values, 8
average.line, 9
average.line.cond, 10

book.tee.data, 11

calc.se.Np, 12
cdf.ds, 12, 127
cds, 7, 13, 23
check.bounds, 14
check.mono, 15
coef.ds, 16, 28
coef.io, 32
coef.io (coef.ds), 16
coef.io.fi, 33
coef.rem (coef.ds), 16
coef.trial, 37

coef.trial (coef.ds), 16
coef.trial.fi, 39
coefficients (coef.ds), 16
compute.Nht, 17
covered.region.dht, 17, 18
covn (varn), 146
create.bins, 18
create.command.file, 19
create.ddfobj, 42, 43, 55
create.model.frame, 19
create.varstructure, 20

ddf, 13, 16, 20, 21, 27, 28, 31, 33, 34, 36–38,
82, 111, 112, 122

ddf.ds, 25, 27, 32, 34, 37, 52–54
ddf.gof, 29, 113, 127
ddf.io, 25, 30, 33, 36
ddf.io.fi, 25, 31, 32, 32
ddf.rem, 25, 33
ddf.rem.fi, 25, 34, 35
ddf.trial, 25, 36, 39
ddf.trial.fi, 25, 37, 38
DeltaMethod, 39, 46, 48, 49
det.tables, 40, 91
detfct, 7, 53
detfct.fit, 41
detfct.fit.opt, 42
dht, 18, 21, 44, 48, 49, 51, 88, 114, 145
dht.deriv, 48
dht.se, 46, 48, 49
ds.function, 51

flnl, 28, 52, 54
flpt.lnl, 54
flpt.lnl (flnl), 52
flt.var, 53, 53

g0, 54
getpar, 52, 54
gof.ds, 28, 55
gof.io, 32
gof.io (ddf.gof), 29
gof.io.fi, 33
gof.rem (ddf.gof), 29
gof.trial, 37
gof.trial (ddf.gof), 29
gof.trial.fi, 39
gstdint, 56

hist, 5, 94

150 INDEX

histline, 57

integrate, 56
integratedetfct.logistic, 58
integratelogistic.analytic, 59
integratepdf, 52, 59
io.glm, 33, 60, 127, 128
is.linear.logistic, 61
is.logistic.constant, 62

keyfct.th1, 63
keyfct.th2, 63
keyfct.tpn, 64

legend, 5
lfbcvi, 65
lfgcwa, 71
line, 5
lines, 5, 94
logisticbyx, 78
logisticbyz, 79
logisticdetfct, 79
logisticdupbyx, 80, 80
logisticdupbyx_fast, 80
logit, 81
logLik.ddf, 82
logLik.ds (logLik.ddf), 82
logLik.io (logLik.ddf), 82
logLik.rem (logLik.ddf), 82
logLik.trial (logLik.ddf), 82

MCDS (MCDS.exe), 83
mcds, 7, 23, 82
MCDS.exe, 83
mcds_dot_exe, 25
mcds_dot_exe (MCDS.exe), 83
model.matrix, 131
mrds (mrds-package), 4
mrds-package, 4
mrds_opt, 25, 84

NCovered, 86
nlminb_wrapper, 86

optim, 52
optimx, 24, 42, 86, 129

p.det, 87
p.dist.table, 88
p_dist_table, 115

p_dist_table (p.dist.table), 88
parse.optimx, 89
pdot.dsr.integrate.logistic, 90
plot, 94, 126
plot.det.tables, 91, 113
plot.ds, 28, 92, 112
plot.io, 32, 95
plot.io.fi, 33, 97
plot.rem, 99
plot.rem.fi, 101
plot.trial, 37, 103
plot.trial.fi, 39, 104
plot_cond, 106
plot_layout, 108
plot_uncond, 108
points, 94
predict (predict.ds), 110
predict.ds, 110
print.data.frame, 115
print.ddf, 112
print.ddf.gof, 30, 112
print.det.tables, 113
print.dht, 51, 114
print.p_dist_table, 114
print.summary.ds, 115
print.summary.io, 116
print.summary.io.fi, 116
print.summary.rem, 117
print.summary.rem.fi, 118
print.summary.trial, 118
print.summary.trial.fi, 119
prob.deriv, 120
prob.se, 121
process.data, 122
pronghorn, 123
ptdata.distance, 124
ptdata.dual, 124
ptdata.removal, 125
ptdata.single, 125

qqplot.ddf, 13, 29, 30, 126, 126

relevel, 85
rem.glm, 36, 127
rescale_pars, 129

sample_ddf, 130
setbounds, 130
setcov, 131

INDEX 151

sethazard (setinitial.ds), 132
setinitial.ds, 132
sim.mix, 132
solvecov, 133
stake77, 134
stake78, 136
summary, 112
summary.ds, 28, 112, 115, 138
summary.io, 32, 116, 139
summary.io.fi, 33, 117, 140
summary.rem, 117, 141
summary.rem.fi, 118, 142
summary.trial, 37, 119, 143
summary.trial.fi, 39, 119, 144
survey.region.dht, 145

test.breaks, 145
two-part-normal (keyfct.tpn), 64

varn, 47, 50, 146

	mrds-package
	add.df.covar.line
	adj.check.order
	AIC.ddf
	apex.gamma
	assign.default.values
	average.line
	average.line.cond
	book.tee.data
	calc.se.Np
	cdf.ds
	cds
	check.bounds
	check.mono
	coef.ds
	compute.Nht
	covered.region.dht
	create.bins
	create.command.file
	create.model.frame
	create.varstructure
	ddf
	ddf.ds
	ddf.gof
	ddf.io
	ddf.io.fi
	ddf.rem
	ddf.rem.fi
	ddf.trial
	ddf.trial.fi
	DeltaMethod
	det.tables
	detfct.fit
	detfct.fit.opt
	dht
	dht.deriv
	dht.se
	ds.function
	flnl
	flt.var
	g0
	getpar
	gof.ds
	gstdint
	histline
	integratedetfct.logistic
	integratelogistic.analytic
	integratepdf
	io.glm
	is.linear.logistic
	is.logistic.constant
	keyfct.th1
	keyfct.th2
	keyfct.tpn
	lfbcvi
	lfgcwa
	logisticbyx
	logisticbyz
	logisticdetfct
	logisticdupbyx
	logisticdupbyx_fast
	logit
	logLik.ddf
	mcds
	MCDS.exe
	mrds_opt
	NCovered
	nlminb_wrapper
	p.det
	p.dist.table
	parse.optimx
	pdot.dsr.integrate.logistic
	plot.det.tables
	plot.ds
	plot.io
	plot.io.fi
	plot.rem
	plot.rem.fi
	plot.trial
	plot.trial.fi
	plot_cond
	plot_layout
	plot_uncond
	predict.ds
	print.ddf
	print.ddf.gof
	print.det.tables
	print.dht
	print.p_dist_table
	print.summary.ds
	print.summary.io
	print.summary.io.fi
	print.summary.rem
	print.summary.rem.fi
	print.summary.trial
	print.summary.trial.fi
	prob.deriv
	prob.se
	process.data
	pronghorn
	ptdata.distance
	ptdata.dual
	ptdata.removal
	ptdata.single
	qqplot.ddf
	rem.glm
	rescale_pars
	sample_ddf
	setbounds
	setcov
	setinitial.ds
	sim.mix
	solvecov
	stake77
	stake78
	summary.ds
	summary.io
	summary.io.fi
	summary.rem
	summary.rem.fi
	summary.trial
	summary.trial.fi
	survey.region.dht
	test.breaks
	varn
	Index

